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Woodford Shale (Upper Devonian to Lower Mississippian):  
From Hydrocarbon Source Rock to Reservoir

Brian J. Cardott1 and John B. Comer2

1 Oklahoma Geological Survey, retired
2 Indiana Geological & Water Survey, retired

ABSTRACT.—Woodford Shale (Upper Devonian to Lower Mississippian) is 
widely recognized as a world-class hydrocarbon source rock and since 2004 has 
become a commercially significant hydrocarbon source-rock reservoir for both oil 
and gas. This report compiles and synthesizes the research on Woodford Shale in 
Oklahoma and highlights the lithology, source rock attributes, and reservoir char-
acteristics that make this formation a successful shale resource play. The Woodford 
Shale represents another model in the growing list of unconventional shale resourc-
es that have been successfully developed in the USA.

Woodford Shale is a fine-grained, organic-rich mudrock consisting mostly of 
clayey and siliceous mudrock and, less commonly, dolomitic mudrock. Basal sand-
stones (Misener and Sylamore members) are found in limited areas of northern and 
central Oklahoma and are characterized by well-sorted and well-rounded quartz 
grains that were locally sourced from Middle Ordovician sandstone exposed along 
the Ozark Uplift during the Late Devonian. Other than in these basal units, sand-
sized detrital grains are notably absent from the Woodford Shale.

Woodford Shale is present throughout most of Oklahoma but is missing from 
the Wichita Uplift and Hollis Basin in southwestern Oklahoma and is locally absent 
in parts of the Arbuckle Uplift, near the central Oklahoma fault zone, and in the 
northwestern Cherokee Platform adjacent to the Nemaha Uplift. Woodford Shale 
passes from surface exposures in the Ozark Uplift, Arbuckle Uplift, and Ouachita 
Mountains Uplift to maximum subsea depths >16,000 ft (4,900 m), >17,000 ft 
(5,000 m), and >24,000 ft (7,000 m) in the Ardmore, Arkoma, and Anadarko Ba-
sins, respectively. Thicknesses in the subsurface increase from less than 25 ft (8 m) 
on the Anadarko Shelf and Cherokee Platform to greater than 700 ft (200 m) in the 
southeastern Anadarko Basin and the Marietta Basin.

Woodford Shale is informally subdivided into three members. The lower mem-
ber contains plant megafossils and intermediate radioactivity, the middle member 
contains the most resinous spores and the least pollen as well as the highest radio-
activity, and the upper member contains the lowest radioactivity and lowest total 
organic carbon content. All three members consist of thin beds and thin laminae 
that are highly variable in composition.

Quartz is commonly the dominant mineral and mostly occurs together with 
highly variable amounts of illite. Quartz is present as silt- and clay-sized detrital 
grains and as chert of biological origin. Biogenic chert forms during early diagen-
esis from the alteration of siliceous microorganisms (mostly Radiolaria) and inter-
vals with high concentrations of biogenic quartz are more brittle than intervals with 
detrital quartz supported in a ductile clay matrix. Conventional vertical wells in 
Carter and Marshall Counties have produced oil at low volumes for many decades 
from naturally fractured, organic-rich Woodford Shale intervals composed of bio-
genic chert. Recent unconventional exploration and applied research confirm that 
the brittle biogenic chert intervals are the optimum lithology for hosting and main-
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taining both natural and induced fractures. Furthermore, a greater concentration of 
natural fractures occurs in the brittle chert-rich lithology and improves permeability 
in the Woodford Shale, resulting in better well performance.

Woodford Shale sediments were deposited over a major regional unconformity 
surface during a period of global warming and worldwide marine transgression. 
Sequence stratigraphic interpretations for the Woodford Shale are based on well log 
characteristics and lithology and are consistent with the global sequence established 
for the Late Devonian. Initial Woodford Shale deposition, including the lower and 
most of the middle members, has been interpreted as a transgressive system tract 
coincident with the global sea-level rise. The uppermost part of the middle member 
and the upper member have been interpreted as a highstand system tract, with the 
maximum flooding surface within the uppermost middle member. However, the 
fact that the Frasnian/Famennian boundary has been placed in each of the three 
members by different researchers is a cautionary tale indicating that regional cor-
relations, including member boundaries, are poorly constrained. These correlations 
are not based on the well documented, high resolution biochronological data that 
characterize the global sequence because Woodford Shale is generally lacking in 
fossils.

Woodford Shale sediments were deposited in an epeiric sea that extended along 
a west to southwest facing passive continental margin during the Late Devonian. 
The widespread, blanket-like distribution and nearly uniform fine-grained lithology 
indicate that the entire region was one of low relief, and the absence of deltas, sub-
marine fans, coarse clastic wedges, large clinoforms, and sand-bearing turbidites 
indicate that adjacent land areas were not drained by large rivers. Plate tectonic 
reconstructions place Oklahoma at a low southern latitude in the warm, arid south-
easterly trade wind belt. An arid paleoclimate is indicated by the presence of evap-
orite minerals (e.g., anhydrite, gypsum, length slow chalcedony, primary dolomite), 
biomarkers (gammacerane), and primary sedimentary structures (syneresis cracks). 
In addition, extensive drought conditions are suggested by a suite of biomarkers 
(certain polycyclic aromatic hydrocarbons) that have been attributed to paleo-wild-
fires. The anomalously high organic carbon concentration characteristic of Wood-
ford Shale is due to the combined effects of high biological productivity in the upper 
water column and widespread anaerobic and euxinic bottom conditions. Nutrients 
supporting high biological productivity were derived from a persistent zone of 
coastal upwelling along the Late Devonian continental margin, which is recorded 
by the age-equivalent biogenic chert of the Arkansas Novaculite. Upwelled nutri-
ents were swept into the Woodford epeiric sea with the countercurrents required 
to maintain water balance by replacing evaporative losses and the surface water 
driven out of the basin by Coriolis forces. Transport of the fine-grained sediment 
that dominates the section was accomplished mostly by wind and by storm-gener-
ated currents. Deflation of the arid landscape, limited discharge from intermittent 
streams, and storm-generated runoff account for most of the terrestrial sediment 
contributed to the basin. These processes also contributed to eutrophication and the 
high biological productivity by supplying terrestrial nutrients to the basin. Recent 
research on the Upper Devonian Three Forks Formation of the Williston Basin, 
which lay at the same southern paleolatitude as Woodford Shale, documents the 
significance of storms in the southern tropics during the Late Devonian. The thin 
varve-like laminae commonly observed in Woodford Shale represent deposition of 
atmospheric dust from fluctuating winds and episodic fallout of fine sediment en-
trained along isopycnals. The presence of abraded grains of penecontemporaneous 
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dolomite in graded silty layers and in the basal sandstones (Misener and Sylamore 
members) indicates that resuspension and resedimentation were active processes 
throughout the region during the Late Devonian.

Woodford Shale averages >6 wt. % total organic carbon (TOC) and has a re-
ported range between <1 wt. % and 30 wt. % TOC. Bulk organic matter is dominat-
ed by Type II (oil generating) kerogen of marine origin, which visual analyses con-
firm is mostly amorphous organic matter with lesser amounts of vitrinite, inertinite 
(semifusinite and fusinite), liptinite (e.g., Tasmanites), zooclasts (e.g., acritarchs), 
and solid bitumen. Thermal maturity based on vitrinite reflectance (VRo) analysis 
ranges from marginally mature (0.49% VRo) to post mature (6.36% VRo). Depth of 
burial accounts for the thermal maturity throughout most of Oklahoma, but local 
high-maturity anomalies in northern Oklahoma appear to be related to high heat 
flow from igneous rocks at depth and to the migration of hydrothermal fluids.

Exploitation of Woodford Shale as an unconventional resource play began in 
Oklahoma in 2004 with the completion of vertical gas wells in the Arkoma Basin. 
Between August 2004 and June 2020, 5,505 wells were completed exclusively in 
the Woodford Shale. Seven percent of these are vertical wells and 93% are horizon-
tal/directional wells. Based on a gas-to-oil ratio of <17,000:1, 32% are classified 
as oil wells. Initial potential (IP) gas rates up to 29,847 thousand cubic feet (mcf) 
per day and IP oil/condensate rates up to 2,505 barrels per day have been record-
ed. Only natural gas is produced from Woodford Shale intervals having a thermal 
maturity >1.67% VRo.

The combination of an organic carbon-rich, thermally mature hydrocarbon 
source rock with intervals of brittle lithology make the Woodford Shale an excellent 
unconventional oil and gas reservoir. Recent assessments of the total undiscovered 
hydrocarbon resources in Woodford Shale are 29 trillion cubic feet of natural gas, 
853 million barrels of crude oil, and 384 million barrels of natural gas liquids. 
Such large volumes remaining to be produced from this hydrocarbon source-rock 
reservoir document the significant commercial potential of the Woodford Shale 
play in Oklahoma.

INTRODUCTION

The purpose of this report is to summarize litholog-
ic, hydrocarbon source rock, and oil and gas reservoir 
characteristics of the Woodford Shale in Oklahoma, to 
highlight the rock properties that influence crude oil and 
natural gas production from this hydrocarbon source-
rock reservoir, and to document the history of oil and 
gas production from the Woodford Shale. The thermal 
maturity of the Woodford Shale by vitrinite reflectance is 
discussed and summarized for the entire state. Also pre-
sented here is an overview of the environment of deposi-
tion of Woodford Shale and the various lines of evidence 
that support specific conclusions about the conditions 
that gave rise to these widely distributed, organic-rich 
mudrocks. The geological and structural context for this 
discussion is provided by the map showing the major 
structural provinces in Oklahoma (Figure 1).

Woodford Shale is mostly a fine-grained rock, but with 
lithologic properties that vary both laterally and vertical-
ly on large (kilometer) and small (nanometer) scales. It 
is unusual in its high organic carbon content and wide-
spread distribution. Woodford Shale is present through-
out most of Oklahoma, and age-equivalent organic-rich 
rocks that include the Chattanooga Shale and the middle 
division and parts of the upper division of the Arkansas 
Novaculite are present in northeastern and southeastern 
Oklahoma, respectively. Age-equivalent organic-rich 
rocks are found throughout North America, including 
Woodford Shale of New Mexico and Texas; the Chatta-
nooga Shale in the Eastern Interior of the United States; 
the New Albany, Ohio, and Sunbury shales of the cen-
tral and eastern United States; the Antrim Shale in the 
Michigan Basin; the Bakken Shale in the Williston Basin; 
the Kettle Point Formation of Ontario, Canada; and the 
Pilot Shale of Utah (Conant and Swanson, 1961). Many 
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of these rocks are productive unconventional oil and gas 
reservoirs. Along with a review of the lithologic prop-
erties of the Woodford Shale, this report also includes 
discussions of the source rock parameters and reservoir 
characteristics relevant to the unconventional develop-
ment of this resource. Also included is an overview of 
the history of development of hydrocarbon source-rock 
reservoirs in the Woodford Shale. As such, this report 
attempts to synthesize our current understanding of the 
Woodford Shale unconventional oil and gas resource 
in Oklahoma.

Because the Woodford Shale has been the subject of 
many publications, too many to be adequately covered in 
detail here, an update of the Woodford Shale bibliography 
published by Cardott (1992) is available as Appendix 1.

WOODFORD SHALE AS ROCK

Stratigraphy and Nomenclature

Taff (1902) is the earliest known usage of the term 
“Woodford Chert” presumably for exposures on the south 
side of the Arbuckle Uplift near the town of Woodford, 
Oklahoma, Carter County (Jordan, 1957). Gould (1925) 
described the Woodford type locality as the “Village of 
Woodford”. Urban (1960) attributed the type locality to 
Section 27, Township 2 South, Range 1 West. The term 
Woodford Chert was used by Gould (1925) and Wilmarth 
(1938). The term “Woodford Formation” has also been 
used (e.g., Morgan, 1924; Wilson, 1958; O’Brien and 
Slatt, 1990; Comer, 1991; Cullen, 2018; Ko and others, 

2018; Zoback and Kohli, 2019). The preferred term for 
the Woodford Formation, used in lexicons and elsewhere, 
is “Woodford Shale” for occurrences in both the subsur-
face and surface in Oklahoma (Tarr, 1955; Jordan, 1957, 
1959, 1962; Urban, 1960; Hass and Huddle, 1965; Ams-
den, 1975, 1980; Mankin, 1987; Fay, 1997). The term 
Chattanooga Shale is used for stratigraphically equiv-
alent outcrops around the Ozark Uplift in northeastern 
Oklahoma, in the subsurface in Kansas, and in northern 
Arkansas (Huffman, 1958; Wise and Caplan, 1979; Carr, 
1987; Comer, 1992; Lambert, 1993; Newell and others, 
2001; McFarland, 2004). The informal Misener sandstone 
in north-central Oklahoma is considered a basal unit of 
the Woodford Shale (Amsden, 1975). The Chattanooga 
Shale in northeastern Oklahoma is divided into the infor-
mal Sylamore sandstone (stratigraphically equivalent to 
the Misener sandstone) and Noel black shale members 
(Huffman and Starke, 1960a, 1960b; Pittenger, 1988). 
The middle division and parts of the upper division of the 
Arkansas Novaculite in the Ouachita Mountains Uplift 
include strata that are equivalent in age to the Woodford 
Shale (Hass, 1951; Hass and Huddle, 1965). Outcrops 
recognized and mapped as Woodford Shale also occur in 
the northern Ouachita Mountains Uplift (Weber, 1992; 
Cardott, 1994; Suneson and Hemish, 1994, p. 74).

Strata above and below the Woodford Shale vary re-
gionally in Oklahoma (Figure 2). Woodford Shale over-
lies a major regional unconformity (Maxwell, 1959) and 
the age of the underlying strata, ranging mostly from Or-
dovician to late Early Devonian, is related to the extent 
of erosion into the pre-Woodford unconformity surface 
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(Johnson and Cardott, 1992). Small areas in northeastern 
Oklahoma are underlain by Precambrian granite (Tarr 
and others, 1965; Denison, 1981; Benson, 2014). Hunton 
Group carbonate formations (ranging in age from Late 
Ordovician to Early Devonian) underlie Woodford Shale 
in most of Oklahoma (Tarr and others, 1965; Amsden, 
1980). Woodford Shale and age-equivalent rocks are 
overlain by Mississippian-age formations (Jordan and 
Rowland, 1959; Sutherland and Manger, 1979; Suther-
land, 1981). The distribution and lithology of Mississip-
pian-age formations vary widely in Oklahoma, resulting 
in differing correlations among Sycamore Limestone, 
Caney Shale, Osage Lime, and Meramec Lime proposed 
by various researchers (Higley, 2013; Gaswirth and Hig-
ley, 2013; Cullen, 2017; Miller and Cullen, 2018; Suri-
amin and Pranter, 2018; Milad and Slatt, 2019; Miller 
and others, 2019).

Age and Correlation

Based on conodont assemblages in eight Woodford 
Shale exposures in the Arbuckle Uplift and Ouachita 
Mountains Uplift in southern Oklahoma, Hass and Hud-
dle (1965) determined that most of the Woodford Shale is 
Late Devonian (Frasnian-Famennian) in age and locally 
the uppermost part is Early Mississippian (Kinderhooki-
an). Over and Barrick (1990), Barrick and others (1990), 
Over (1990, 1992), and Barrick and Meyer (2019) con-
firmed the Late Devonian (Frasnian) to Early Missis-
sippian (Kinderhookian) age of the Woodford Shale in 
southern Oklahoma also based on conodonts. Another 
approach by Von Almen (1970) used microspore species 
to determine the Late Devonian to Early Mississippian 
age of the Woodford Shale.

The age of the upper Woodford Shale is problemat-
ic in outcrop and depends on where the upper bound-
ary is picked within the gradational shale interval below 
the first appearance of carbonate beds in the Sycamore 
Limestone. Fay (1989) identified the Woodford/Syca-
more boundary in the extensively studied outcrop of the 
Woodford Shale on Interstate-35. This well-known local-
ity is on the south side of the Arbuckle Uplift in Section 
25, Township 2 South, Range 1 East, where the Woodford 
Shale is exposed along the south-bound lanes of Inter-
state-35. The Woodford/Sycamore contact at this location 
is marked with Brass Marker 2 (Fay, 1989), which is 9 ft 
(2.7 m) below the sharp decrease in gamma-ray readings 
used as the upper Woodford boundary in the subsurface 
(Puckette and others, 2013; Milad and Slatt, 2019; Mi-

lad and others, 2020). Schwartzapfel (1990) and Kondas 
and others (2018) picked the boundary in outcrops at the 
first appearance of the laterally continuous carbonate 
beds of the Sycamore Limestone. Schwarzapfel (1990) 
and Schwartzapfel and Holdsworth (1996) suggested a 
later Mississippian age (Osagean-Meramecian) for the 
uppermost part of the Woodford Shale exposures located 
in the Criner Hills (between the Ardmore and Marietta 
Basins) and along Interstate-35 in the Arbuckle Uplift 
based on radiolarian and conodont faunas. Also based 
on conodonts, Kleehammer (1991) and Over (1992) in-
dicated the age of the overlying Sycamore Limestone in 
southern Oklahoma is largely Meramecian and not older 
than late Osagean.

Amsden and Klapper (1972), Kirkland and others 
(1992), Kuykendall and Fritz (1993, 2001), and Barrick 
and Meyer (2019) described the basal Misener sand-
stone as late Middle to Late Devonian in age (Givitian to 
Famennian). The Sylamore sandstone, which is present in 
northeastern Oklahoma, is late Middle Devonian to Ear-
ly Mississippian (Freeman and Schumacher, 1969, Pit-
tenger, 1981) and the Noel shale (the upper black-shale 
member of the Chattanooga Shale; Amsden and others, 
1967) is Late Devonian to Early Mississippian (Huffman 
and Starke, 1960b). Conodont analysis indicates that the 
middle division and parts of the upper division of the 
Arkansas Novaculite are Late Devonian to Early Mis-
sissippian (Kinderhookian) (Hass, 1951; Amsden and 
others, 1967) and an age-equivalent, lateral facies of the 
Woodford Shale.

Distribution

The distribution of Woodford Shale in Oklahoma is il-
lustrated by structure and isopach maps shown in Plates 
1 and 2. Plate 1 is reproduced from Evans and others 
(2018) and is the first Woodford Shale structure map that 
includes all of Oklahoma. Plate 2 is a detailed Woodford 
Shale isopach map reproduced from Rottmann (2000a), 
which represents drilled thicknesses not corrected for dip. 
Appendix 1 includes a bibliography of publications with 
previous versions of these maps. Note that the depth and 
thickness of age-equivalent strata within the Arkansas 
Novaculite in the Ouachita Mountains Uplift of south-
eastern Oklahoma are not included in the structure and 
isopach maps. The most detailed structure and isopach 
maps of the Woodford Shale in the Marietta Basin are 
in Brito (2019). Isopach maps of the Woodford Shale in 
the Ardmore Basin are in Party and others (2008), EIA 
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(2011b) and Henderson (2013).
The Woodford Shale is present throughout most of 

Oklahoma but is absent from the Wichita Uplift and Hol-
lis Basin in southwestern Oklahoma and is missing in 
parts of the Arbuckle Uplift, is locally missing in central 
Oklahoma associated with the central Oklahoma fault 
zone, and is missing in a limited area just east of the 
Nemaha Uplift on the Cherokee Platform in northern 
Oklahoma (Plate 1). The Woodford Shale occurs at max-
imum subsea depths >16,000 ft (4,900 m) in the Ardmore 
Basin, >17,000 ft (5,000 m) in the Arkoma Basin, and 
>24,000 ft (7,300 m) in the Anadarko Basin (Plate 1). In 
general, the Woodford Shale thickens from less than 25 ft 
(8 m) thick in the Anadarko Shelf and Cherokee Platform 
to more than 700 ft (200 m) thick in the southeastern 
Anadarko and Marietta Basins and to 250 ft (76 m) in the 
Arkoma Basin (Plate 2). Houseknecht and others (2014) 
illustrated thicknesses as intervals of gross and net high 
(>150 API) gamma-ray response for the Woodford Shale 
in the Arkoma Basin. Mapping in the Ardmore Basin by 
Party and others (2008) indicated local areas in Carter 
and Marshall Counties where Woodford Shale thickness 
exceeded 400 ft (122 m). The overall basinward thicken-
ing is disrupted by numerous dendritic trends that repre-
sent incised paleovalley-fill sediments deposited during 
the earliest stages of Woodford deposition as marine 
transgression inundated the regional pre-Woodford un-
conformity surface (Kuykendall and Fritz, 1993, 2001; 
Rottmann, 2000a, b; Krumme, 2001; Blackford, 2007; 
Althoff, 2012; Turner and Slatt, 2016; Infante-Paez and 
others, 2017; McCullough, 2017; Slatt and others, 2014, 
2018; Zhang and Slatt, 2019). Some local irregularities 
appear to be the result of Woodford deposition in karst 
sink holes in the underlying unconformity surface (Gupta 
and others, 2013; Zhang, 2016; Liborius and Sneddon, 
2017; Milad, 2017; Slatt and others, 2015, 2018a; Zhang 
and Slatt, 2019; Slatt, 2020). Torres and others (2017) 
and Torres-Parada (2020) interpreted potential lacustrine 
(mini-basin fill) intervals above the unconformity based 
on seismic data, but no petrographic, geochemical, litho-
stratigraphic, or faunal analyses have been undertaken 
to confirm a lacustrine depositional environment for 
these deposits.

Flora and Fauna

Cardott and Chaplin (1993 and references therein) 
summarized the following microfossils, macrofauna, and 
flora found in the Woodford Shale: miospores, acritarchs, 

algae (Tasmanites, Quisquilites, Foerstia), scolecodonts, 
conodonts, radiolarians, sponge spicules, brachiopods 
(Lingula, Productella, Spirifer, Strophomena), arthro-
pods (crustacean), gastropods, cephalopods (Probleoc-
eras, Mooreoceras), progymnosperm Archaeopteris (or-
gan genus Callixylon), and the gymnosperm Cordaitales 
(form genus Dadoxylon). Calamites (?) and Callixylon 
have been identified in the lower one-fourth of the Wood-
ford Shale at the McAlister Cemetery Quarry (SW¼ Sec-
tion 36, Township 5 South, Range 1 East) located in the 
Criner Hills, Carter County, Oklahoma (Kirkland and 
others, 1992). In addition, shrimp (Feldmann and Sch-
weitzer, 2010), ammonoids (Becker and Mapes, 2010), 
and microspores (pollen) of terrestrial origin (von Almen, 
1970; Molinares Blanco, 2013; Molinares Blanco and 
others, 2017a) have been described. Kondas and others 
(2018) described marine phytoplankton (acritarchs and 
prasinophytes), plant remains, miospores, and zooclasts 
(scolecodonts and animal tissues) in the Interstate-35 
Woodford Shale outcrop in the Arbuckle Uplift. Ko and 
others (2018) recognized Leiosphaeridia telalginite in the 
Interstate-35 Woodford Shale outcrop.

Trace fossils occur locally in Woodford Shale but are 
more pervasive in the basal sandstones. Kirkland and oth-
ers (1992) identified Planolites-like trace fossils in the 
lower part of the Woodford Shale at the McAlister Cem-
etery Quarry. Planolites, Chondrites, and Paleophycus 
were identified in Woodford cores from McClain, John-
ston, Marshall, and Bryan Counties, mostly as horizontal 
traces that rarely result in total disruption of the rock fab-
ric (Coleman and Jordan, 2018). Schaubcylindrichnus, 
Planolites, Zoophycos, Phycosiphon, Chondrites, and 
Cosmoraphe were described in mudstone cores by Kvale 
and Bynum (2014). In addition, Helminthopsis and Pa-
leodictyon have been recognized during computerized 
tomography (CT) scanning of Woodford Shale mudstone 
cores (Kvale, personal communication, 10/24/2017). 
These traces are mostly associated with the Zoophycos 
and Nereites ichnofacies and they typically are produced 
under stressed conditions (Kvale and Bynum, 2014). 
Trace fossils occur mostly in lighter colored mudstones 
(Kvale and Bynum, 2014) and are found rarely in darker, 
organic-rich mudstones (Comer, 1991, 2008). Teichich-
nus (probably T. rectus) has been identified in a Sylamore 
sandstone outcrop located in Delaware County, Oklaho-
ma, Section 14, Township 22 North, Range 22 East, by 
Pittenger (1981). In another study of 11 conventional 
4-inch diameter cores recovered from Misener oil fields 
in Grant and Garfield Counties, Francis (1988) identified 
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burrows (in 10 cores) and intensely bioturbated intervals 
(in 6 cores) in the Misener sandstone member, but no 
specific names were assigned to these trace fossils.

Lithofacies

The Woodford Shale is described as a marine, highly 
radioactive, carbonaceous and siliceous, fissile to blocky, 
dark-gray to black shale containing chert, subordinate 
amounts of green-greenish-gray shales, phosphate nod-
ules, and pyrite (Cardott and Chaplin, 1993). Chert beds 
and phosphate nodules are predominant in the upper 
member in southern Oklahoma but absent in northeast-
ern Oklahoma. Within the Arkoma Basin, the proportion 
of chert in the Woodford Shale increases eastward and 
southward (Houseknecht and others, 2014).

The anomalously high radioactivity of Woodford Shale 
makes it easy to identify on gamma-ray logs and numer-
ous authors have used this feature, along with other log 
characteristics and lithologic variables, to divide the 
Woodford Shale into three informal members (Figure 3), 
although the boundaries of each member chosen by dif-
ferent authors may not be the same or correlative. In this 
report we also divide the Woodford Shale into three in-
formal members (lower, middle, upper). Ellison (1950) 
first divided Woodford Shale in the Permian Basin into 
three units based on radioactivity, electric log response, 
and core lithology. The lower unit was calcareous and 
cherty and had the lowest radioactivity, the middle unit 
had the most resinous spores (Tasmanites huronensis) 
and the highest radioactivity, and the upper unit had few 
resinous spores and intermediate radioactivity (Ellison, 
1950). Urban (1960) subdivided the Woodford Shale in 
Oklahoma into lower, middle, and upper zones based on 
a palynological study of the Buckhorn Creek outcrop 
(NE¼ Section 3, Township 2 South, Range 3 East) in the 
Arbuckle Uplift (Ham and others, 1990). He interpret-
ed the depositional environment to be near-shore marine 
in the lower member (consistent with the occurrence of 
plant megafossils and vitrinite derived from woody or-
ganic matter from the progymnosperm Archaeopteris), 
distal marine in the middle member (consistent with a 
low pollen index of Turner and others, 2015), and near-
shore marine in the upper member (Urban, 1960, support-
ed by Turner and others, 2015). Von Almen (1970) used 
palynology of fifty-five Woodford Shale outcrop and core 
samples from seven localities in south-central Oklahoma 
to determine environment of deposition of three alter-
nating palynomorph zones (Microspore-Acritarch [most 

regressive], Microspore-Leiosphere [intermediate], and 
Leiosphere [most transgressive]) in terms of distance 
from shore and cycles of marine transgression and re-
gression. He reported finding all Callixylon (organ genus 
of Archaeopteris) wood specimens in the basal part and 
interpreted the wood as indicative of a near-shore marine 
environment of deposition.

Hester and others (1990a, b) divided the Woodford 
Shale into three informal stratigraphic units (lower, mid-
dle, upper) based on kerogen content, gamma-ray inten-
sity, density, and resistivity log character of ninety-nine 
wells in the Anadarko Basin and Anadarko Shelf. Seven 
cross sections demonstrated regional thinning and thick-
ening of the units, with onlap across a positive structural 
trend located about 75 miles north of the Wichita Uplift 
that separated Woodford depocenters to the southwest 
(Anadarko Basin) and the northeast (Sedgwick Basin 
in south-central Kansas) (Hester and others, 1990a, Fig. 
12, p. D12). Thinning and truncation of Woodford mem-
bers across this structure indicates that contemporaneous 
basement flexure occurred during Woodford deposition. 
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Figure 3. Electric log signatures of Woodford Shale infor-
mal members (modified from Hester and others, 1990a). 
Woodford Shale overall has anomalously high radioac-
tivity, high resistivity, and low density. Within the Wood-
ford, the lower member has intermediate radioactivity, 
density, and resistivity; the middle member has the high-
est radioactivity and resistivity and the lowest density; 
and the upper member has the lowest radioactivity and 
resistivity and highest density.
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The lower member has a more variable thickness dis-
tribution than the middle and upper members, reflecting 
deposition on an irregular, eroded, karsted, and chan-
nelized pre-Woodford unconformity surface. Woodford 
Shale thickens into the Anadarko Basin, but the upper 
member thickens toward the northeast and into the Sedg-
wick Basin (Hester and others, 1990a). The shift of depo-
sition to the northeast in late Woodford time is interpreted 
as reflecting the transition from subsidence focused in 
the deep axis of the southern Oklahoma aulacogen to the 
early stages of foreland downwarping that culminated in 
Late Paleozoic (Pennsylvanian and Permian) orogeny 
(Hester and others, 1990a).

Lambert (1992, 1993) divided the Chattanooga (Wood-
ford) Shale in Kansas and Oklahoma into lower, mid-
dle, and upper shale members based on geophysical-log 
response. Outcrop studies utilizing spectral gamma-ray 
profiles with uranium, thorium, and potassium readings 
taken every 6 in. (15 cm) and plotted full scale provide 
additional details used in correlation (Krystyniak, 2005; 
Aufill, 2007; Paxton and others, 2006; Paxton and Car-
dott, 2008). Most of the high gamma-ray signal is related 
to the occurrence of uranium and is indicative of depo-
sition under conditions of 
slow sedimentation (Conant 
and Swanson, 1961; Pax-
ton and Cardott, 2008, p. 
32). The top of the middle 
member is picked above 
the double gamma-ray peak 
(Figure 4) (Paxton and oth-
ers, 2006).

Caldwell (2011, 2012, 
2014) and Caldwell and 
Johnson (2013) defined 
seven mudrock lithofacies 
(siliceous mudrock; clayey, 
siliceous mudrock; clayey 
mudrock; dolomitic, clayey 
mudrock; organic-poor clay-
ey mudrock; organic-poor, 
clayey mudrock II; pyritic, 
organic-rich clayey mud-
rock) based on total organic 
carbon (TOC) and mineral 
content (primarily quartz, 
clay and dolomite) to delin-
eate the mechanical proper-
ties, including “fracability”, 

of the rock, and identified fifteen lithostratigraphic units 
within the basal, lower, middle, and upper Woodford 
Shale in the Anadarko Basin. The first transgression of 
the Woodford sea was recorded by a TOC-poor clayey 
mudrock basal unit. The lower and middle Woodford 
members contain clayey mudrock, clayey siliceous mud-
rock, or less common dolomitic clayey mudrock. The up-
per Woodford member is predominately clayey siliceous 
mudrock and siliceous mudrock. Furthermore, Turner 
and others (2015, 2016) concluded that a significant frac-
tion of the silica in the upper Woodford is biogenically 
derived, while the highest concentrations of clay proxies 
(K and Al) occur within massive mudrock facies in the 
lower and middle Woodford.

Watney and others (2013) divided the Woodford Shale 
into lower, middle, and upper members based on biostrati-
graphic, petrophysical, geochemical, and sequence-strati-
graphic information from a shallow core taken on the 
Lawrence Uplift (located on the northern flank of the 
Arbuckle Uplift in southern Pontotoc County). Peza and 
others (2014) divided the Woodford Shale into six zones. 
Slatt and others (2012) subdivided a Woodford Shale core 
from southern Oklahoma into eight lithofacies. Using 
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Figure 4. Vertical full-scale, gamma-ray profile of the Woodford Shale in the Henry 
House Creek section in the Arbuckle Uplift of Oklahoma showing delineation of infor-
mal members. Kerogen type and TOC data are from Lambert (1993). Figure is modified 
from Paxton and others (2006).
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the three informal-member terminology, Slatt and others 
(2012) confirmed that the middle member had the greatest 
marine input and areal extent while the lower and upper 
members were characterized by oxic-suboxic conditions 
(suggestive of a near-shore marine environment). Turner 
and others (2015) and Turner and Slatt (2016) divided 
the Woodford Shale into eight lithofacies in the Wyche 
Farm shale pit (NE¼ Section 2, Township 2 North, Range 
6 East) located in the Arbuckle Uplift; these include (1) 
argillaceous mudrock with detrital quartz, (2) mixed si-
liceous-argillaceous mudrock with thin clay lamina, (3) 
black to dark-gray laminated siliceous mudrock, (4) lam-
inated siliceous mudrock with phosphatic nodules, (5) si-
liceous mudrock with phosphatic nodules, (6) calcareous 
mudrock, (7) light gray siliceous laminated mudrock, and 
(8) siliceous massive mudrock. Galvis and others (2018) 
divided the Woodford Shale in the Speake Ranch outcrop 
(SE¼ Section 18, Township 2 South, Range 1 West) lo-
cated in the Arbuckle Uplift into seven lithofacies based 
on clay, quartz, and carbonate content. Laughrey and oth-
ers (2017) identified five microfacies in the Woodford 
Shale in a well in Garvin County, Oklahoma – siliceous 
mudstone; silicified mudstone (most common); chert and 
argillaceous chert; argillaceous, siliceous dolostone; and 
phosphatic mudstone.

Comer (1991, 1992, 2005, 2008) recognized regional 
lithofacies trends in the Woodford Shale based on inte-
grated study of the organic geochemistry and petrology 
of the formation (Figure 5). Siliciclastic lithofacies that 
contain higher proportions of detrital quartz, clay min-
erals (mostly illite), terrestrial (woody, Type III) organic 
matter, lower abundances of marine (amorphous, Type II) 
organic matter, and little or no biogenic silica are found 
mostly in northeastern Oklahoma proximal to the Ozark 
Uplift (Figure 5a and b) and in the western part of the 
southern Oklahoma aulacogen proximal to the Transcon-
tinental Arch (Figure 5c) (Comer, 1992). Organic-rich 
mudstone lithofacies with little or no terrigenous organ-
ic matter, fewer and finer detrital quartz grains, lower 
concentrations of clay minerals, and increased amounts 
of biogenic silica are found mostly to the southeast in 
areas farthest from the paleotopographic highlands of 
the Transcontinental Arch and Ozark Uplift and nearer 
to the Late Devonian continental margin (Comer, 1992). 
Lithofacies change progressively from terrigenously in-
fluenced in the northwest (Figure 5c) to marine domi-
nated in the southeast through the southern Oklahoma 
aulacogen (Figure 5d) and into the Ouachita Mountains 
Uplift (Figure 5e) (Comer, 1992) where biogenic chert 
composed of radiolarian tests and sponge spicules dom-
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Figure 5. Outcrops and thin sections of Woodford Shale and age-equivalent rocks illustrating the changes in lithology across 
Oklahoma. No chert beds are present in exposures proximal to the Ozark Uplift (a and b) and none are present in cores from 
the western Anadarko Basin (c). Biogenic chert beds increase in abundance and thickness from west to east across the Arbuckle 
Uplift into the Ouachita Mountains Uplift (d-e). Photomicrographs b-c and f-h are views through a polarizing microscope using 
plane polarized light. (a) Chattanooga Shale is overlain disconformably by St. Joe Limestone (Lower Mississippian) along US 
Highway 71 at Belle Vista, Benton County, Arkansas, Section 12, Township 20 North, Range 31 West. This outcrop, which is 
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devoid of biogenic chert beds and generally lacks biogenic silica, is typical of the Chattanooga Shale exposed in northeastern 
Oklahoma. At this location a grab sample of the Chattanooga Shale contained 2.1 wt. % TOC, a mixture of marine and terrestrial 
organic matter, predominantly fine-grained detrital quartz and clay, and a mean random VRo of 1.11%. Data from Comer (1992, 
Table 2, location AR1). (b) Sandstone lens in black shale (Comer and Hinch, 1987, Figure 3) from a grab sample of an outcrop 
in the Ozark Uplift at Gayler Cemetery in the type area of the Sylamore sandstone (Freeman and Schumacher, 1969), Stone 
County, Arkansas, Section 21, Township 15 North, Range 11 West. The interval of the Sylamore member of the Chattanooga 
Shale that was excavated and sampled consists of interbedded black shale and mostly medium-grained supermature quartz 
arenite. Quartz grains (Q) in the sandstone lens and scattered in the basal zone of the overlying bed are well rounded and rep-
resent a narrow grain-size range. Phosphate (P) and detrital chert (ct) are common in the Sylamore sandstone (Pittenger, 1981; 
note that samples designated as AR9 by Pittenger [1981] and by Comer [1992] are from the same suite of samples originally 
collected by Comer). Based on visual kerogen analysis, organic matter type in the black shale beds, which are characteristic 
of the Chattanooga Shale exposed in the Ozark Uplift, varies from predominantly structured material of terrigeneous origin 
to amorphous material of marine origin to a subequal mixture of structured and amorphous material. Black shale beds at this 
location have a mean TOC content of 3.5 wt. % and a mean random VRo of 0.83%. Data from Comer (1992, Table 2, location 
AR9). (c) Horizontal burrow in a silty shale interval characteristic of the Woodford Shale in the western Anadarko Basin (Comer 
and Hinch, 1987, Figure 6a). Silt-sized components are mostly dolomite with lesser amounts of detrital quartz. This thin section 
was cut from core recovered from a drilled depth of 14,259 ft (4,346 m) in the Glover Hefner Kennedy No. 1 Hoffman well 
located in Custer County, Oklahoma, Section 1, Township 14 North, Range 16 West. Mean TOC for the cored interval of the 
Woodford Shale is 5.8 wt. %, mean random VRo is 1.91%, and the organic matter is predominantly composed of structured 
material of terrigenous origin. Large carbonized wood fragments were observed on some bedding planes (Comer, 2008, panel 
2). Data from Comer (1992, Table 2, location A16). (d) Woodford Shale in the Arbuckle Uplift on State Highway 110 two 
miles north of Dougherty, Murray County, Oklahoma, Section 1, Township 2 South, Range 2 East. Interbedded biogenic chert 
(ct) and black shale (bs). Fissile black shale beds are typically thicker than chert beds. TOC of black shale = 8.5 wt. %. Data 
from Comer (1992, Table 2, location OK26). (e) Arkansas Novaculite in the Ouachita Mountains Uplift at Black Knob Ridge 
located on State Highway 3 one mile east of Atoka, Atoka County, Oklahoma, Section 14, Township 2 South, Range 11 East. 
At this location biogenic chert beds are thicker (up to 8 in. [20 cm] thick) and more abundant than black shale beds. The chert 
beds are more resistant to weathering, stand out in relief on the outcrop, and are highly fractured as a result of the folding and 
thrusting that occurred during Late Paleozoic orogenesis. Mean TOC for this section is 3.2 wt. % (range = 0.1 – 11.2 wt. %). 
Mean random VRo = 0.52%. Data from Comer (1992, Table 2, location OK21). (f) Naturally fractured biogenic chert from the 
oil-producing interval in the Woodford Shale in the southeastern Ardmore Basin, North Aylesworth field, Marshall County, 
Oklahoma (Comer and Hinch, 1987, Figure 5c). The fine network of fractures represents the effective reservoir porosity. The 
white object in the center of the slide is a recrystallized radiolarian test that was truncated by a stylolite (S). Bitumen lines the 
fractures and is also concentrated in the stylolite. Pale elliptical bodies scattered through this rock are radiolarian tests that have 
been recrystallized and deformed. This thin section was cut from a conventional core recovered from a drilled depth of 3,056 
ft (931 m) in the Texaco No. 1-K Drummond well located in Section 11, Township 6 South, Range 6 East. The biogenic chert 
at this depth has a TOC content of 4.5 wt. %. The cored interval of the Woodford Shale contains predominantly amorphous 
organic matter of marine origin, a mean random VRo of 0.46%, and a mean TOC of 7.7 wt. %. Data from Comer (1992, Table 
2, location A33). (g) Highly compacted black shale bed collected from the Interstate-35 outcrop located on the south flank 
of the Arbuckle Uplift in Carter County, Oklahoma, Section 25, Township 2 South, Range 1 East (Comer and Hinch, 1987, 
Figure 7c). Opaque material is amorphous organic matter (AOM) of marine origin and the yellowish streaks are Tasmanites 
(T) that were flattened due to compaction. Secondary chert is absent. The mean TOC for the Woodford Shale section is 8.4 wt. 
% (range = 3.0 – 22.0 wt. %) and the mean random VRo is 0.52%. Visual kerogen analysis confirms that amorphous organic 
matter of marine origin predominates in all of the samples collected from this outcrop. Data from Comer (1992, Table 2, lo-
cation OK35). (h) Biogenic chert in the Woodford Shale. Radiolarian tests (R) are undeformed and supported in chert cement 
(white areas). The brownish material and dark brown clusters are amorphous organic matter of marine origin that predominate 
in the Woodford Shale at this location. The lack of compaction of both the radiolarian tests and the organic matter is evidence 
of pervasive, very early chert cementation. This thin section was cut from a cored interval at a depth of 6,264 ft (1,909 m) in 
the Woodford Shale in the Gulf No. 1 Schroeder well located in Oklahoma County, Oklahoma, Section 3, Township 12 North, 
Range 2 West. The well is in the southwestern Cherokee Platform near the boundary with the Anadarko Shelf/Basin provinces 
shown in Figure 1. The Woodford Shale in this core has a mean TOC of 9.3 wt. % and a mean random VRo of 0.40%. Data 
from Comer (1992, Table 2, location A27).
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inates the Upper Devonian section (Amsden and others, 
1967; Park and Croneis, 1969; Houseknecht and others, 
2014). Naturally fractured, conventional reservoirs that 
produce oil from the Woodford Shale are completed in 
the biogenic chert intervals (Figure 5f). Where black 
shale and biogenic chert are interbedded (e.g., Figure 
5d), the end member lithologies are highly compacted, 
organic carbon-rich (up to 30 wt. % TOC) black shale 
(Figure 5g) and uncompacted, densely cemented biogen-
ic chert (Figure 5h). Terrigenous sediment is also most 
common in the lower unit of the Woodford where silt- 
and sand-sized quartz frequently is abundant and detri-
tal lag deposits are often observed (Amsden and others, 
1967; Amsden and Klapper, 1972; Amsden, 1975; Com-
er, 1992). The informally recognized basal units, Misen-
er and Sylamore sandstone members, are mostly mature 
quartz arenite with the quartz grains derived from the 
Middle Ordovician quartz arenite that was exposed in 
nearby outcrops along the Ozark Uplift during the Late 
Devonian (Amsden and Klapper, 1972; Pittenger, 1981; 
Francis, 1988; Krumme, 2001). The textural maturity of 
the quartz in these basal members (Figure 5b) is inherit-
ed, with very little modification, from the Middle Ordovi-
cian sandstone that sourced them (Amsden and Klapper, 
1972; Pittenger, 1981, 1988; Francis, 1988; Kuykendall 
and Fritz, 1993, 2001).

Sequence Stratigraphy

Regional Studies: Several studies have applied the 
concepts of sequence stratigraphy to the Woodford Shale 
in Oklahoma (Lambert, 1993; Ali, 2015; Althoff, 2012; 
Amorocho Sanchez, 2013; Bernal, 2013; Bontempi, 
2015; Chain, 2012; Coleman and Jordan, 2018; Galvis, 
2017; Kilian, 2012; Liborius and Sneddon, 2017; May-
nard, 2016; McCullough, 2014, 2017; Molinares Blanco, 
2013; Peza and others, 2014; Slatt, 2013a, 2015; Slatt and 
Rodriguez, 2012; Slatt and others, 2015; Watney and oth-
ers, 2013; Turner and others, 2015, 2016; Turner, 2016; 
Zhang, 2016; Jones, 2017; Brito, 2019; Philp and DeGar-
mo, 2020; Slatt and others, 2014, 2018a and references 
therein; Slatt, 2020). Figure 6 is representative of these 
sequence stratigraphic interpretations.

Slatt and Rodriguez (2012) provided the following 
time frames for Woodford Shale sea level cycles: 2nd 
order (~10-25 My), 3rd order (~1-3 My), and 4th order 
(~100,000-300,000 years). Overall, the Woodford Shale 
follows a 2nd order sequence (deposited over a 33 My 
time span) with at least eight high-frequency cycles pre-

sumed equivalent to 3rd order cycles (Slatt and Rodri-
guez, 2012; Slatt, 2013b, 2015). Slatt (2015) provides 
an overview of sequence stratigraphy of unconventional 
resource shales. Similar to other unconventional resource 
shales, Slatt (2013a, 2015) identified a basal erosional se-
quence boundary, transgressive system tract in the lower 
and most of the middle Woodford Shale members, con-
densed section/maximum flooding surface at the high-
est gamma-ray reading (plotted full scale) in the upper 
middle member, and highstand system tract during major 
sea level regression in the upper middle and upper Wood-
ford Shale members (Figure 6). The maximum flooding 
surface is at the double gamma-ray peak near the top of 
the Woodford middle member (Turner and others, 2015, 
2016; Jones, 2017; Coleman and Jordan, 2018; Slatt and 
others, 2018a, b). Slatt and Rodriguez (2012) indicated 
that the transgressive systems tract and condensed sec-
tion are relatively organic rich while the highstand or 
regressive systems tracts are organic poor. Zhang (2016) 
identified seven parasequence third-order cycles in the 
Woodford Shale in north-central Oklahoma within duc-
tile transgressive system tract zones and brittle highstand 
or regressive system tract zones.

These high-resolution stratigraphic analyses have pro-
vided invaluable insights into the complexity and vari-
ability of the Woodford Shale interval and have estab-
lished a detailed framework for intrabasinal correlation, 
resource assessment, and exploration and development of 
this hydrocarbon source-rock reservoir. Also, this work 
has significantly advanced our understanding of the envi-
ronment of deposition, relative fluctuations of sea level, 
sediment origins, and conditions controlling productivity 
and preservation of organic material. Integration of res-
ervoir property data (e.g., porosity, pore size distribution, 
rock hardness, etc.) into the array of information gathered 
during Woodford Shale studies provides a comprehensive 
set of parameters with which to target exploration plays 
in the Woodford Shale and gives additional insights for 
development of other unconventional shale resources.

Global Studies: Stratigraphic sequences recognized in 
Woodford Shale should correlate with the global sequenc-
es established for the Late Devonian (Figure 7). While 
some attempts have been made to accomplish these cor-
relations using various proxies (e.g., Paxton and others, 
2006; Slatt, 2013a; Bernal, 2013; DeGarmo and others, 
2016; Turner and others, 2016; Slatt and others, 2018b; 
Philp and DeGarmo, 2020), the lack of high-resolution 
biochronologic studies for Woodford Shale renders such 
exercises problematic. The global sequences and their 
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boundaries shown in Figure 7 are the result of eustatic 
sea-level changes that have been well documented and 
correlated in Upper Devonian sections from widely sep-
arated locations around the world (Johnson and others, 
1985; Sandberg and others, 1988; Sandberg and others, 
2002). Researchers worldwide have undertaken intensive 
and detailed biostratigraphic studies that have resulted 
in a high-resolution biochronology for the Late Devo-
nian primarily based on conodont zonations (Sandberg 
and others, 1988; Sandberg and others, 2002; Becker 
and others, 2016). Together with lithologic and facies 
analysis, these biostratigraphic studies have resulted in a 
consistent picture of global eustacy and have fostered an 
informed discussion about the conditions and events that 
gave rise to global changes during the Late Devonian.

Figure 7 summarizes the major events that have been 
correlated with both gradual and abrupt changes in sea 

level during the Late Devonian. These events include 
from oldest to youngest (1) the Taghanic onlap in the 
Givetian (Sandberg and others, 2002; Narkiewicz and 
others, 2016; Zambito and others, 2016); (2) the Amönau 
event in central Germany coincident with the major trans-
gressive pulse at the beginning of the Frasnian; (3) the 
Alamo impact of southern Nevada coincident with abrupt 
global transgression; (4) the semichatovae transgression 
with abrupt deepening that carried the pelagic conodont 
species Palmatolepis semichatovae far onto shallow 
carbonate platforms (Sandberg and others, 2002; Beck-
er and others, 2016); (5) the Frasnian/Famennian mass 
extinction, one of the five major mass extinctions of the 
Phanerozoic, attributed to the series of events at the end 
of the Frasnian comprising the Kellwasser crisis which 
was punctuated by periods of transgression, eustatic 
highstands, and abrupt and severe regression (Sandberg 
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and others, 1988; Sandberg and others, 2002); (6) eustat-
ic rise that coincides with post-extinction biotic radia-
tion (Sandberg and others, 2002); (7-10) four prominent, 
short-lived transgressions interpreted as interglacial peri-
ods of eustatic sea-level rise (Sandberg and others, 2002) 
superimposed on the background of falling, then rising 
sea level in the Famennian attributed to the waxing and 
waning of glaciation at high latitude in Gondwana (Sand-
berg and others, 2002; Caputo and others, 2008; Isaacson 
and others, 2008); (11) major regression near the end of 
the Famennian interpreted as the climax of Famennian 
glaciation in Gondwana and marking the onset of biot-
ic decline preceding the Devonian/Carboniferous mass 
extinction; and (12) Devonian/Carboniferous mass ex-
tinction. Events 11 and 12 encompass the Hangenberg 
crisis, a period of mass extinction that some argue was 
comparable in scale to the five greatest Phanerozoic mass 
extinctions (Kaiser and others, 2016).

Although the Woodford Shale sediments were depos-
ited during and influenced by these global events, the 
formation lacks the floral and faunal abundance and di-
versity to replicate the high-resolution biochronology ac-
complished in other regions and to tie specific sequenc-
es or horizons to their globally recognized equivalents. 
However, Over (1990) maintained that the Woodford 
Shale in Oklahoma does contain sufficiently abundant 
and diverse conodont fauna to allow high resolution bio-
stratigraphic analysis that could potentially lead to robust 
correlation with the global Late Devonian biochronolog-
ic sequence.

Conodont studies of a few Oklahoma localities have 
identified some zones that can be correlated to the global 
sequence (Over, 1990). The oldest Woodford conodont 
fauna is in the Misener and Sylamore sandstone members 
and is assigned to the Polygnathus varcus zone of late 
Middle Devonian (Givetian) age (Freeman and Schum-
acher, 1969; Amsden and Klapper, 1972). These quartz-
rich units represent the earliest depositional manifestation 
in Oklahoma of the Taghanic onlap (Figure 7), a period 
of worldwide rising sea level, global warming, increased 
aridity, dysoxic conditions, and a global biocrisis during 
which extinction of Middle Devonian faunas occurred 
(Zambito and others, 2016). Over (1990, 2002) used 
conodonts to identify the Frasnian/Famennian boundary 
horizon in five Woodford Shale outcrops, three located in 
the Arbuckle Uplift, one in the Criner Hills, and one on 
the Lawrence Uplift (located on the northern flank of the 
Arbuckle Uplift in southern Pontotoc County; Ham and 
others, 1990). The Frasnian/Famennian boundary occurs 

at the end of the Kellwasser biocrisis, a period of intense 
biotic decline culminating with late Frasnian mass ex-
tinction (Sandberg and others, 2002; Becker and others, 
2016). The boundary horizon on the Lawrence Uplift and 
in the northern Arbuckle Uplift is a thin phosphate and 
conodont lag deposit in an otherwise continuous dark 
shale section (Over, 1990, 2002). The coarser grain size, 
accompanied by a change to more nearshore conodont 
biofacies, at the Woodford Frasnian/Famennian boundary 
indicates a drop in sea level and higher energy conditions 
(Over, 1990), which correlates with the abrupt regres-
sion recognized on a global scale (Figure 7, event 5). The 
cause of the abrupt global change from transgression to 
regression is still debated but may involve extraterres-
trial impact, onset of glaciation centered in the south-
ern hemisphere (Gondwana), and related environmental 
crises (Sandberg and others, 2002). Over (1990, 1992) 
used conodonts to identify the Devonian/Carboniferous 
boundary horizon in eight Woodford Shale outcrops, five 
located on the Lawrence Uplift and three in the Arbuckle 
Uplift. The Devonian/Carboniferous boundary occurs at 
the end of the Hangenberg biocrisis, a period of intense 
biotic decline culminating with late Famennian mass ex-
tinction (Sandberg and others, 2002; Becker and others, 
2016; Kaiser and others, 2016). The boundary horizon is 
disconformable and associated with pelletal phosphate 

Figure 7. Late Middle to Late Devonian sea-level curve, 
showing positions of 12 sea-level changes, catastrophic 
events, and mass extinctions. D/C is Devonian-Carbonif-
erous, F/F is Frasnian-Famennian. Modified from Sand-
berg and others (2002).
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laminae at six localities, occurs at the top of a green 
shale interval at a seventh locality, and is represented by 
a boundary interval with no exact horizon at the eighth lo-
cality (Over, 1990, 1992). Phosphate is indicative of ero-
sion and non-deposition and, together with the change in 
conodont biofacies from offshore to transitional and more 
nearshore fauna, indicates higher energy conditions and a 
lowered sea level at the Devonian/Carboniferous transi-
tion (Over, 1990, 1992), which correlates with the regres-
sion recognized on a global scale (Figure 7, event 11). 
The cause of the global regression in the latest Devonian 
is widely considered to be glaciation in Gondwana (Sand-
berg and others, 2002; Caputo and others, 2008; Isaacson 
and others, 2008; Kaiser and others, 2016; Lakin and oth-
ers, 2016) which may have been triggered by significant 
loss of atmospheric CO2 resulting from massive burial 
of organic carbon during the global deposition of black 
shale (Kaiser and others, 2016). Subsequent work by 
Nowaczewski (2011) used the conodont biostratigraph-
ic demarcations established for the Frasnian/Famennian 
and Devonian/Carboniferous boundaries by Over (1990) 
for two outcrops in the Arbuckle Uplift (Interstate-35 and 
Classen Lake; Section 24, Township 1 South, Range 1 
East) as benchmarks for establishing biomarker varia-
tions for the Famennian sequence.

Additional studies have used various proxies to infer 
correlations with the global sequences established by the 
detailed conodont biostratigraphy. Bernal (2013) used 
various proxies (e.g., radioactivity, TOC, lithology) to in-
fer transgressive/regressive cycles and to correlate these 
with the global sequence for a measured section at the 
McAlister Cemetery Quarry located in Carter County, 
Oklahoma. Turner and others (2016) used chemostrati-
graphic proxies to place the Frasnian/Famennian bound-
ary above an inferred maximum flooding surface in two 
cores and three outcrops in central Oklahoma. Philp and 
DeGarmo (2020) published biomarker data for the ex-
tensively studied Woodford Shale outcrop exposed in the 
McAlister Cemetery Quarry, Carter County, Oklahoma, 
and illustrated how these data tie to other proxies in iden-
tifying depositional sequences and establishing intraba-
sinal, regional, and global correlations. However, the fact 
that the Frasnian/Famennian boundary has been placed in 
the lower member by some researchers (Over, 1990; Cul-
len, 2020), uppermost middle member by Slatt (2013a, 
2020) and Molinares Blanco (2019), and in the upper 
member by others (DeGarmo and others, 2016; Philp and 
DeGarmo, 2020) indicates that regional correlations, in-
cluding member boundaries, are poorly constrained.

This research illustrates that a more detailed under-
standing of Woodford Shale sequence stratigraphy may 
be possible by linking lithostratigraphic, chemostrati-
graphic, and biomarker studies with detailed biostrati-
graphic studies such as those pioneered by Over (1990) 
and Nowaczewski (2011). The resulting chronostratigra-
phy would improve intra- and interbasinal correlations 
in Woodford Shale, including more accurate intrabasin-
al and regional assignment of lower, middle, and upper 
member boundaries. Developing the biostratigraphic 
chronology of the Woodford Shale and tying it directly 
to the various proxies would allow more detailed inter-
pretation of the depositional environments and processes 
that evolved throughout the Late Devonian in Oklahoma.

Mineralogy

The mineralogy of Woodford Shale and the basal 
Misener and Sylamore sandstone members in Oklaho-
ma is summarized in Table 1. Woodford Shale samples 
represented in Table 1 are from 25 of the locations de-
scribed by Comer (1992) and these mineralogy data are 
previously unreported. Misener sandstone data repre-
sent cores from Grant and Garfield Counties (Francis, 
1988) and Sylamore sandstone data represent outcrops 
from Delaware, Cherokee, and Sequoyah Counties (Pit-
tenger, 1981). Woodford Shale mineralogy was obtained 
by X-ray diffraction analysis, whereas Misener and Syl-
amore sandstone mineralogy was determined by point 
counting thin sections.

An important point to emphasize here is that the Wood-
ford Shale consists of thin beds and thin laminae that 
are highly variable in composition. While high resolution 
stratigraphic studies have become more commonplace, 
many analyses represent information composited over 
intervals greater than the scale of the variability. The 
mineralogy data presented in this section is particular-
ly susceptible to homogenizing lamina-scale variations 
(e.g., X-ray diffraction data) and also to overestimating 
the significance of a small sample (e.g., thin section data). 
While understanding Woodford Shale variability is crit-
ical to identifying sweet spots and establishing commer-
cial hydrocarbon production, what is most important for 
assessing Woodford Shale depositional processes is the 
larger scale lateral and vertical changes. In this context, 
recognizing the vertical and lateral changes in mineralo-
gy, as well as the significance of detrital sediment grain 
size, is essential to developing a cogent model for the 
deposition of Woodford Shale.
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Furthermore, when interpreting the depositional set-
ting of the Woodford Shale, caution must be exercised 
in applying sequence stratigraphy models based on con-
tinental margins that are primarily influenced by large 
rivers discharging into the sea and dispersing large vol-
umes of sand and mud as deltas, bars, strand plains, fans, 
channel-fills, and classical sand and mud turbidites. 
Woodford Shale consists almost exclusively of silt- and 
clay-sized sediments deposited across the huge expanse 
of epeiric seas that stretched from present-day New Mex-
ico to Arkansas. Because there is no sedimentologic or 
stratigraphic evidence of large perennial rivers along this 
continental margin during the Late Devonian, concepts 
of progradation and retrogradation based on clinoform 
geometries and significant vertical changes in grain size 
(sand, silt, clay) used in the classic applications of se-
quence stratigraphy should be modified or abandoned 
for the Woodford Shale and similar mudrocks. The rec-
ognition of shoreline advance or retreat cannot be de-
fined by seaward or landward shifts of grain size-defined 
packages of sediment nor by overlapping clinoforms. 
Shoreline shifts may not necessarily be indicated by in-
creasing or decreasing amounts of terrestrial sediment 
proxies, although the general agreement of the larger 
scale transgression (lower and middle members) and re-
gression (upper member) interpreted for Woodford Shale 
is in overall agreement with the global eustatic curve for 
the Late Devonian (Figure 7). In contrast to the classical 
sedimentation models, an increasing contribution of ter-
restrially derived material may result from non-riverine 
processes, such as tropical storms, dust storms, and less 
intense winds capable of eroding unconsolidated silt- and 
clay-sized particles from exposed land areas and widely 
dispersing these sediments far across the basin. The cau-
tion emphasized here is that processes deducible from 
stratigraphic, lithologic, and geochemical data to explain 
Woodford Shale deposition are fundamentally different 
than the processes invoked using classical sequence stra-
tigraphy to explain deposition along more typical river- 
and sand-dominated continental margins. Assuming that 
the sequence stratigraphy fits a classical continental mar-
gin model could lead to significant misinterpretation of 
the conditions and environments of deposition for Wood-
ford Shale mudrocks.

Black Shale: Semiquantitative X-ray diffraction anal-
ysis of 127 Upper Devonian black shale samples from the 
suite of rocks collected in Oklahoma by Comer (1992) 
had the following mineralogy (Table 1, Woodford Shale, 
gray highlight). Quartz was present in all samples, with 

a mean concentration of 71% and a range from 44% to 
100%. Illite (listed as “clay” in Table 1 for the Woodford 
Shale) was also present in all samples analyzed, at least 
in trace amounts, with a mean concentration of 14% and 
a range from <1% to 32%. Feldspar, pyrite, and dolomite 
were present in the majority, but not all, of the samples 
analyzed. Feldspar was present in 83% of the samples, 
with a mean concentration of 2% and a range from 0% 
to 8%; pyrite was present in 73% of the samples, with a 
mean concentration of 3% and a range from 0% to 20%; 
and dolomite was present in 64% of the samples, with a 
mean concentration of 6% and a range from 0% to 43%. 
Calcite was detected in only 5 of the samples analyzed and 
phosphate (fluorapatite) was detected in only 2 samples. 
Chlorite (not shown in Table 1) is a minor component 
that was present in 78% of the samples analyzed, with 
a mean of 3% and a range from 0% to 8%. Other minor 
components found in a few samples included kaolinite 
(trace amounts in 5 samples), mixed-layer illite-smectite 
(trace amounts in 15 samples), magnesite (trace amounts 
in 4 samples), and anhydrite (trace amounts in 1 sample). 
Magnesite is found in the same samples from a subsur-
face cored interval containing the highest concentrations 
of dolomite.

Numerous additional mineralogy studies have been un-
dertaken and the data show that quartz is commonly the 
dominant mineral and mostly occurs together with highly 
variable amounts of illite. Most mineralogy studies are 
limited to grab samples that indicate the mineralogy of 
a small part of the formation. Based on Woodford Shale 
grab samples, Abousleiman and others (2008), Branch 
(2007), Kirkland and others (1992), O’Brien and Slatt 
(1990), and Fishman and others (2013) reported mineral 
content ranging from 9 to 95% quartz, 0 to 56% dolomite, 
and 2 to 53% illite. The problem with grab samples is that 
the results depend on how the samples were collected, of-
ten selected by color (e.g., darkest shale) for hydrocarbon 
source rock richness instead of randomly selected.

A less biased and more representative approach to de-
termine shale mineralogy distribution is using an electric 
log such as the Elemental Capture Spectroscopy (ECS) 
log by Schlumberger which identifies the elements pres-
ent in the rock and converts element yields to mineral 
weight percent, thus providing the lithologic variations 
for the entire formation. Buckner and others (2009) and 
Slatt and others (2012) applied the ECS log to a shal-
low core of the Woodford Shale in southern Oklahoma. 
Slatt and others (2012, p. 386) stated that “The ECS log 
shows a quartz-rich upper Woodford, a more clay-rich 
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  Detrital Grain Composition Cement  
          Ferroan    

Stratigraphic Statistics Quartz Feldspar Dolomite Phosphate Chert Calcite Clay Silica Dolomite Calcite Pyrite Porosity 
Unit   (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

  Minimum 44 0 0 0 - - <1 - - 0 0 - 
  Maximum 100 8 43 32 - - 32 - - 12 20 - 

Woodford Shale Mean 71 2 6 0 - - 14 - - 0 3 - 
  STDV 13 2 8 3 - - 6 - - 1 4 - 
  n 127 127 127 127 - - 127 - - 127 127 - 

Fr
eq

ue
nc

y n+ 127 105 81 2 - - 127 - - 6 93 - 
n- 0 22 46 125 - - 0 - - 121 34 - 
%+ 100 83 64 2 - - 100 - - 5 73 - 
%- 0 17 36 98 - - 0 - - 95 27 - 

  Minimum 3 - 0 0 - 0 0 0 0 0 0 0 
  Maximum 88 - 91 13 - 3 17 9 10 23 22 14 

Misener Sandstone Mean 64 - 16 2 - 0 4 2 3 2 1 6 
  STDV 20 - 22 2 - 0 4 2 3 4 3 4 
  n 72 - 72 72 - 72 72 72 72 72 72 72 

Fr
eq

ue
nc

y n+ 72 - 59 64 - 8 57 48 43 18 23 71 
n- 0 - 13 8 - 64 15 24 29 54 49 1 
%+ 100 - 82 89 - 11 79 67 60 25 32 99 
%- 0 - 18 11 - 89 21 33 40 75 68 1 

  Minimum 80 0 - - 0 - 0 2 - - - 2 
  Maximum 100 4 - - 10 - 11 31 - - - 24 
Sylamore Sandstone Mean 96 1 - - 1 - 3 13 - - - 9 
  STDV 5 1 - - 2 - 3 6 - - - 5 
  n 33 33 - - 33 - 33 33 - - - 33 

Fr
eq

ue
nc

y n+ 33 21 - - 22 - 28 21 - - - 33 
n- 0 12 - - 11 - 5 12 - - - 0 
%+ 100 64 - - 67 - 85 64 - - - 100 
%- 0 36 - - 33 - 15 36 - - - 0 

Table 1. Statistical summary of the mineralogy of Woodford Shale and the basal Misener and Sylamore sandstone 
members in Oklahoma.*

* Statistics included are as follows: Minimum = the lowest percentage in the samples analyzed; Maximum = the highest 
percentage in the samples analyzed; Mean = the mean percentage in the samples analyzed; STDV = the standard de-
viation (1σ); n = the total number of samples analyzed. Frequency values refer to how often a given mineral is found 
in the samples analyzed: n+ = the number of samples in which the mineral is present; n- = the number of samples in 
which the mineral is absent; %+ = the percentage of samples in which the mineral is present; %- = the percentage of 
samples in which the mineral is absent. Woodford Shale mineralogy was obtained by X-ray diffraction analysis, hence 
detrital quartz grains, chert, and silica cement cannot be distinguished. Misener and Sylamore sandstone mineralogy 
was determined by point counting thin sections. The “clay” in Woodford Shale samples was confirmed by X-ray 
diffraction analysis to be illite; “clay” in the Misener and Sylamore sandstone samples represents total fine-grained 
material (clay matrix). Misener data represent cores from Grant and Garfield Counties; Sylamore data represent out-
crops from Delaware, Cherokee, and Sequoyah Counties. Note that semiquantitative X-ray diffraction analyses are 
reported as weight percent and thin section point count data are reported as volume percent. Also, only the sandstones 
are represented in the Misener and Sylamore data sets and not the shales that are often interbedded in these members. 
The Misener and Sylamore sandstone data are from Francis (1988, 1991, 1992) and Pittenger (1981), respectively.
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middle Woodford, and a lower Woodford of intermedi-
ate quartz and/or clay content.” Major, minor, and trace 
elemental (chemostratigraphic) profiles of an outcrop or 
core, related to mineralogy and used to infer depositional 
environments, are possible with closely-spaced (< 1 foot) 
sampling intervals using a hand-held X-Ray fluorescence 
spectrometer (Slatt and others, 2018b). Turner and oth-
ers (2015, 2016) show a decreasing trend in continental 
proxies (Ti and Zr) from the lower Woodford member to 
the top of the middle Woodford member during a trans-
gression followed by an increasing continental proxies 
trend in the upper Woodford member during a regression.

A number of minor mineral components have been 
identified in Woodford Shale thin sections and in X-ray 
diffraction data or have been inferred based on elemen-
tal analysis. These include gypsum, jarosite, albite, or-
thoclase, ferroan dolomite, norsethite (BaMg[CO3]2), 
gorceixite (BaAl3[PO4][PO3OH][OH]6), magnetite, 
witherite, barite, sphalerite, chalcopyrite, and titanium 
oxides (Bernal, 2013; Turner and others, 2016; Roberts 
and Elmore, 2018). Many of these minor minerals are 
diagenetic and some are indicators of hydrothermal activ-
ity (Roberts and Elmore, 2018). Woodford samples with 
hydrothermal minerals are from cores located in Mc-
Clain and Grady Counties at the southeastern edge of the 
Anadarko Basin in an area intensely faulted during Late 
Paleozoic deformation. The Grady County, Oklahoma, 
core also exhibits an anomalously high vitrinite-reflec-
tance (VRo) value (1.5% VRo) relative to that predicted 
from maximum burial depth versus VRo for the Anadarko 
Basin (Roberts and Elmore, 2018). Comer (1992) also 
recorded a patchy distribution of anomalously high VRo 
values along the Ozark Uplift in northeastern Oklahoma 
and suggested the likely cause was migration of hydro-
thermal fluids associated with the emplacement of Mis-
sissippi Valley-type lead-zinc deposits during the Late 
Paleozoic. Jaiswal and others (2019) proposed that warm 
(~60ºC–150ºC) basinal brines moving upward along 
faults affected rocks ranging in age from Ordovician to 
Pennsylvanian and may have enhanced porosity in Mis-
sissippian-age limestones in Payne County in northern 
Oklahoma. However, conclusions that a thermal anomaly 
exists in Payne County are based on two erroneous values 
of 1.07% VRo in Garfield and Noble Counties and are not 
supported by the data presented in this report (Table 2). 
Some of the diagenetic phases in the Woodford Shale, in-
cluding pyrite, quartz, dolomite, calcite, and apatite, de-
veloped during more than one episode of crystallization 
and at distinctly different times in the burial history (Rob-

erts and Elmore, 2018). Pyrite appears to be the earliest 
authigenic mineral to form (Roberts and Elmore, 2018) 
and framboidal pyrite is the first morphology of pyrite to 
appear in Woodford Shale (Fishman and others, 2013). 
The hydrothermal indicator minerals identified by Rob-
erts and Elmore (2018), witherite, norsethite, magnesite, 
saddle dolomite, gorceixite, potassium feldspar, chalco-
pyrite, and sphalerite, formed during the middle to late 
stages of diagenesis. Also, Roberts and Elmore (2018) 
documented dolomite pseudomorphic after gypsum and 
ferroan dolomite overgrowths on rounded, abraded (de-
trital) dolomite nuclei.

Basal Sandstones: A statistical summary of the pe-
trographic data compiled by Francis (1988, 1991, 1992) 
for cores of the basal Misener sandstone from Grant and 
Garfield Counties is presented in Table 1. In this area 
the Misener sandstone is a well sorted, hybrid quartz-
ose-carbonate succession interbedded with thinly lam-
inated shales (Francis, 1988). Mineralogy of the sand-
stones varies; most are dominated by varieties of quartz 
(monocrystalline and polycrystalline quartz plus chert) 
but in some places, mostly toward the south, dolomite be-
comes abundant and dolomitic sandstones and quartzose 
dolostones are common. Generally, the Misener in this 
region is described as “mature, fine-grained, well sorted, 
well rounded, quartzose to dolomitic sandstone” (Fran-
cis, 1988, p. 60). Francis (1988) presents petrographic ev-
idence that there is both detrital and diagenetic dolomite 
in the Misener. Furthermore, some of the detrital dolo-
mite exists as rock fragments derived from older carbon-
ate formations and some are from the re-sedimentation of 
dolomite that formed penecontemporaneously during the 
Late Devonian (Francis, 1988). Quartz grains commonly 
are well sorted and well rounded, and the high degree of 
rounding, together with the similar grain size, is cited 
as evidence that the quartz was derived from Simpson 
Group sandstone that was exposed during the Late De-
vonian in the Ozark Uplift to the north and east (Amsden 
and others, 1967; Amsden and Klapper, 1972; Francis, 
1988). Accessory minerals include phosphate (as skeletal 
debris, nodules, lithoclasts, ooids, and overgrowths on 
quartz), glauconite, pyrite, and anhydrite (Francis, 1988; 
Kuykendall and Fritz, 2001). Clay minerals include illite, 
chlorite, kaolinite, and minor mixed-layer clay (possi-
bly illite-smectite). Early and late stage calcite and fer-
roan dolomite cements are minor diagenetic components 
(Francis, 1988; Kuykendall and Fritz, 2001). Also, calcite 
occurs as cement in 25% of the Misener samples, where 
it ranges from 1% to 23% by volume. Misener sandstone 
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porosity averages 6% and ranges from 0% to 14% (Table 
1) (Francis, 1988).

The Sylamore sandstone is mostly fine-grained quartz 
arenite and is closely comparable to the Misener in min-
eralogy and texture (Table 1) (Pittenger, 1981, 1988). 
Quartz grains commonly are moderately to well sorted 
and well rounded. Chert grains are present in most sam-
ples and locally comprise up to 10% of the detrital compo-
nents (Table 1). Phosphatic grains, similar to those found 
in the Misener, are common. Minor accessory minerals 
include glauconite, feldspar (mostly microcline), pyrite, 
and gypsum. Authigenic components include quartz (as 
overgrowths) and minor calcite, dolomite, feldspar over-
growths, length-slow and length-fast chalcedony, and 
illite (as alteration of feldspar overgrowths, pore lining, 
and pore filling) (Pittenger, 1981). Notably, the detrital 
feldspar grains are rounded with little or no alteration, 
suggesting, along with gypsum and length-slow chalced-
ony, that arid climate conditions prevailed in Oklahoma 
during Sylamore deposition from late Middle to Late De-
vonian (Pittenger, 1981).

Major differences in mineralogy between the Misen-
er and Sylamore sandstone members documented in 
Table 1 appear to reflect different sediment provenance 
and weathering at the outcrop. Specifically, the greater 
abundance of feldspar in the Sylamore reflects its clos-
er proximity to the Ozark Uplift which was emergent at 
the time of deposition, whereas the greater abundances 

of carbonates in the Misener reflects preservation in the 
subsurface as opposed to dissolution at the outcrop due 
to weathering. The absence of point-count data for chert 
in the Misener sandstone is an artifact of the method used 
by Francis (1988), in which chert is lumped together with 
all of the other varieties of quartz.

Chert: The middle division and parts of the upper di-
vision of the Arkansas Novaculite are equivalent in age 
to the Woodford Shale (Hass, 1951; Hass and Huddle, 
1965), and in the frontal zone of the Ouachita Mountains 
Uplift this interval represents the transition from organ-
ic-rich mudstones in the west to novaculite (chert) in the 
Ouachita core area farther to the east (Figure 5e) (Comer, 
1992, 2005). Indeed, the abundance of Radiolaria and 
the thickness of biogenic chert beds gradually increase 
from west to east across southern Oklahoma (Figure 5d-
e) (Comer, 2005; Kvale and Bynum, 2014), and in the 
core area of the Ouachita tectonic belt almost pure ra-
diolarian chert, with lesser amounts of sponge spicules, 
is the dominant facies (Park and Croneis, 1969; Lowe, 
1975). Although there is significant vertical lithologic 
variability in Woodford Shale, in the transitional region 
of south-central Oklahoma where biogenic chert is inter-
bedded with organic carbon-rich mudstone, chert is more 
abundant and comprises thicker beds higher in the sec-
tion. This is particularly well displayed in outcrops along 
the Arbuckle Uplift, in the Criner Hills, and in cores from 
south-central Oklahoma where chert occurs as laminae 
(<10 mm thick), thin beds, and zones of nodules (Comer 
and Hinch, 1987; Schwartzapfel, 1990; Schwartzapfel 
and Holdsworth 1996; Kirkland and other, 1992; Kvale 
and Bynum, 2014; Becerra and others, 2018; Ghosh and 
others, 2018; Galvis and others, 2018).

Biogenic chert cannot be distinguished from detrital 
quartz by X-ray diffraction analysis. Consequently, a bio-
genic origin for the chert is confirmed by identification 
of siliceous microfossils (radiolarians and sponge spic-
ules) through petrographic examination of rock samples 
collected from cores and outcrops (compare Figure 5b, 
f, and h). Lacking petrographic confirmation, biogen-
ic chert in the Woodford may be inferred using proxy 
analytical data. For example, Figure 8 illustrates the re-
lationship between TOC and total quartz content as de-
termined by X-ray diffraction analysis. The orange line 
on the graph separates samples in which the quartz is 
biogenic chert (upper right), confirmed by petrographic 
analysis, from samples in which the quartz is mostly de-
trital (lower left). The fact that the data points are widely 
scattered and the separation of the two domains is not 
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Figure 8. Graph showing relationship of quartz and total 
organic carbon (TOC) content of the Woodford Shale. 
Samples to the right of the orange line contain significant 
concentrations of biogenic silica and are cherty, impart-
ing relatively more brittleness to the rock.
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perfectly clear-cut is explained by the observation that 
Woodford Shale samples from the transitional region 
often comprise variable mixtures of detrital quartz and 
biogenic chert. However, the graph does suggest that, 
under optimum circumstances, biogenic chert intervals 
in the Woodford can be identified using such data. Re-
cent chemostratigraphy data (mainly high resolution Si/
Al and Si/Ti profiles) have also been used to divide the 
Woodford Shale into brittle vs. ductile beds, with high Si 
and low Al and Ti indicative of biogenic chert and low 
Si with high Al and Ti indicative of greater concentra-
tions of detrital aluminosilicates (mostly clay minerals) 
and detrital quartz (Tréanton, 2014; Turner, 2016; Turner 
and others, 2015, 2016; Maynard, 2016; Reese, 2016; 
Zhang, 2016; Basnett, 2017; Ekwunife, 2017; Liborius 
and Sneddon, 2017; Becerra and others, 2018; Coleman 
and Jordan, 2018; and Slatt and others, 2018a, b). Detrital 
and biogenic quartz impart different geomechanical prop-
erties to rocks which can affect hydraulic fracturing (Slatt 
and others, 2018a). Intervals with high concentrations of 
biogenic quartz, which forms and effectively cements the 
rock during early diagenesis (Figure 5h), are more brittle 
than intervals with mostly detrital (inorganic) quartz sup-
ported in a ductile clay matrix (Turner and others, 2015; 
Slatt and others, 2018a).

The significance of being able to identify biogenic 
chert is that these beds are more competent, and therefore 
are more brittle, more densely fractured (Figure 5f), and 
more fracturable than the organic-rich mudstones (Com-
er, 2005; Kvale and Bynum, 2014; Becerra and others, 
2018; Galvis and others, 2018; Ghosh and others, 2018). 
In terms of commercial reservoir potential, total quartz 
content is less important than the types of quartz that are 
present. Quartz in the Woodford Shale occurs as terrig-
enous clastic grains, biogenic grains (mostly Radiolar-
ia), and diagenetic cements and replacements (Comer, 
1991, 1992, 2005). The diagenetic conversion of biogen-
ic silica (opal-A) to more stable forms of silica (opal-
CT and quartz) begins rapidly after deposition (Kastner 
and others, 1977; Behl, 1999). Limited compaction of 
bedded and nodular biogenic chert, documented by un-
compacted amorphous organic matter and preservation of 
the shape and ornamentation of radiolarian tests (Figure 
5h), are evidence that the conversion of biogenic silica 
to quartz in Woodford Shale was an early diagenetic pro-
cess (Comer and Hinch, 1987). Greater biogenic silica 
concentrations in the Woodford Shale increase the forma-
tion’s brittleness, and zones with abundant organic-rich 
biogenic chert host conventionally-completed fields in 

Carter and Marshall Counties that have produced crude 
oil at low volumes for many decades (Figure 5f) (Comer 
and Hinch, 1987). Woodford oil fields developed using 
conventional completion methods include North Orr, 
Joiner City, Southeast Joiner City, Madill, West Caddo, 
Aylesworth, North Aylesworth, and Northeast Alden. 
Oil is produced in these fields from naturally fractured, 
organic-rich chert intervals within the Woodford Shale 
(e.g., Comer and Hinch, 1987, their figures 5 and 6c-f). 
Oil is also produced from naturally fractured chert inter-
vals in the middle division of the Arkansas Novaculite at 
the Isom Springs Field in Marshall County, Oklahoma. 
Geochemical analyses have confirmed that Woodford 
type oil is produced in the Madill, Aylesworth, Northeast 
Alden, and Isom Springs fields (R. J. Harwood, 1981, 
personal communication; Reber, 1988, 1989) and indi-
cate that the local, organic-rich Upper Devonian rocks 
are the source. Woodford Shale exposed in the McAlister 
Cemetery Quarry located along the Criner Hills Uplift, 
Carter County, Oklahoma, contains an interval of dense-
ly fractured, siliceous mudstone with bitumen lining the 
fractures (e.g., Kirkland and others, 1992, their figure 
31b; Paxton and Cardott, 2008). Similarities with the 
producing intervals in naturally fractured Woodford res-
ervoirs documented by Comer and Hinch (1987), Comer 
(2008) and Reber (1988, 1989) suggest that this fractured 
interval represents an exhumed “fossilized” Woodford 
Shale oil accumulation. Oil production from naturally 
fractured, organic-rich zones within the Woodford is 
compelling evidence that intervals containing significant 
biogenic silica are the optimum targets for hydrocarbon 
source-rock reservoir development.

Depositional Environment

The most detailed and comprehensive assessment of 
the regional depositional setting for Woodford Shale 
was published as a Texas Bureau of Economic Geolo-
gy Report of Investigations by Comer (1991) and later 
summarized in an AAPG poster (Comer, 2008). The ear-
lier publication combined stratigraphic, petrologic, and 
geochemical data from cores, outcrops, and well logs 
to construct a regional depositional model of Woodford 
Shale and age-equivalent formations in West Texas and 
southeastern New Mexico. The more recent poster in-
cluded data from Oklahoma and northwestern Arkansas 
to support and document the relevance and consisten-
cy of the regional model to adjacent areas of the epeiric 
sea that occupied the Late Devonian continental margin. 
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Subsequent development of the Woodford Shale as an 
unconventional oil and gas reservoir has resulted in a 
significant number of new and insightful publications on 
the stratigraphy, lithofacies, petrology, petrography, pa-
leontology, rock mechanics, and geochemistry of the for-
mation (Appendix 1). The diverse data from these studies 
are mostly consistent with the conclusions of the earlier 
regional model. The following discussion is a general de-
scription of the regional depositional model along with 
the key data and lines of evidence that support it.

Paleogeography: The paleogeography of the south-
ern midcontinent during the Late Devonian is illustrated 
in Figure 9. The expansion of an epeiric sea across the 
southern midcontinent of North America (Figure 9), in 
which fine-grained organic carbon-rich sediments were 
deposited, represents a period of global warming and 
worldwide marine transgression (Johnson and others, 
1985; Sandberg and others, 2002). Plate tectonic recon-

structions place Oklahoma at a low southern latitude 
between the wet equatorial doldrums and the wet south-
ern temperate zone in the warm, arid southeasterly trade 
wind belt. The widespread, blanket-like distribution and 
nearly uniform fine-grained lithology of the Woodford 
Shale indicate that the entire region was one of low relief.

The configuration of the Woodford depositional basin 
in Oklahoma during the Late Devonian has been inferred 
from patterns of onlap (Freeman and Schumacher, 1969; 
Amsden and Klapper, 1972; Hester and others, 1990a; 
Kvale and Bynum, 2014) and local and regional variations 
in lithology (Pittenger, 1981; Francis, 1988; Kirkland and 
others, 1992; Comer, 1992, 2005, 2008; Kuykendall and 
Fritz, 2001; Buckner and others, 2009; Slatt and others, 
2012; Kvale and Bynum, 2014; Becerra and others, 2018; 
Galvis and others, 2018; Ghosh and others, 2018). With 
the exception of the Ouachita Mountains Uplift, Arbuckle 
Uplift, and Wichita Uplift, which formed during tectonic 

Figure 9. Paleogeography of the southern Midcontinent during the Late Devonian (Comer, 2008, modified from 
Blakey, 2008). Brown and green areas are emergent land masses and blue areas represent marine environments, with 
the darker shades of blue indicating deeper water. (a) Paleogeographic reconstruction showing North America and the 
orientation of the paleoequator at 385 Ma (Blakey, 2008). (b) Paleogeography of the southern Midcontinent at 385 Ma 
during the early stages of marine transgression. Brown areas were emergent and represent the major terrigenous sed-
iment source areas. Deposition of the sand comprising the basal Misener and Sylamore sandstone members is shown 
schematically as coming from the area of the Ozark Uplift in the northeast. Silt is shown as the dominant terrigenous 
sediment entering the Permian Basin from adjacent land areas in west Texas and southeastern New Mexico (Comer, 
1991). Areas of thick accumulations of biogenic silica are shown in west Texas and southeastern Oklahoma (Caballos 
and Arkansas Novaculite, respectively) and a zone of coastal upwelling is represented along the continental margin, 
(c) Paleogeography of the southern Midcontinent at 360 Ma during eustatic highstand. High biological productivity 
across the region was supported by nutrients originating from the zone of coastal upwelling along the continental 
margin. The middle unit of the Woodford Shale, which is the most widely distributed and most organic-rich interval, 
was deposited under these conditions.
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deformation that began and culminated later in the Pa-
leozoic (Suneson and Stanley, 2017), all of the modern 
structural elements in Oklahoma had some topographic 
expression during the Late Devonian (Figure 9). Rela-
tively shallow water areas are indicated by the greater 
proportions and coarser grain size of terrigenous clastics 
in northeastern, western, and central Oklahoma (Comer, 
1992). The major positive features that supplied much 
of the terrigenous clastic sediment to the basins were 
the Ozark Uplift in the northeast and Transcontinental 
Arch to the west. Also, the Nemaha Uplift was a positive 
feature based on onlap of lower Woodford facies across 
the structure (Kvale and Bynum, 2014), the change in 
lithology from more chert to the east and more clastics 
to the west (Kvale and Bynum, 2014), and the increase 
in abundance of terrigenous organic matter proximal to 
the uplift trend (Comer, 1992; 2005; Kvale and Bynum, 
2014). The major depocenters where Woodford Shale is 
thickest were in the Anadarko, Marietta, and Ardmore 
Basins, which developed along the trend of the pre-ex-
isting southern Oklahoma aulacogen, and in the Arkoma 
Basin, which evolved into a classic peripheral foreland 
basin north of the Ouachita Mountains Uplift (Suneson, 
2012). Relatively deep water is also indicated by thick 
accumulations of biogenic chert (Arkansas Novaculite) 
in the Ouachita Mountains Uplift of southeastern Okla-
homa. Arkansas Novaculite represents a prolonged peri-
od of anomalously high biogenic silica productivity in a 
zone of coastal upwelling along the Late Devonian conti-
nental margin (Park and Croneis, 1969; Lowe, 1975). Al-
though this continental margin was tectonically stable in 
the Late Devonian (Figure 9a), abrupt changes in thick-
ness of the Woodford Shale across the Central Oklahoma 
fault zone associated with the Nemaha Uplift indicate 
that some local structural displacement did occur during 
Woodford deposition (Amsden, 1975, p. 10). Also, onlap, 
thinning, and truncation of Woodford members across a 
northwest-southeast trending structure located in north-
western Oklahoma (from Harper to Kingfisher Counties) 
indicate that contemporaneous basement flexure occurred 
during Woodford deposition (Hester and others, 1990a).

Paleoclimate: Diverse data from the Woodford Shale 
indicate the climate was warm and arid during the Late 
Devonian. The overall scarcity of terrestrial organic mat-
ter in the Woodford Shale suggests that land in the region 
supported only sparse vegetation, and the widespread pre-
dominance of fine-grained sediment and the absence of 
clastic wedge deposits, such as deltas and fans, indicates 
that nearby land areas were low relief and not drained 

by large rivers. The presence of anhydrite and pene-
contemporaneous dolomite in the basal Misener sand-
stone (Francis, 1988, Kuykendall and Fritz, 2001) and 
length-slow chalcedony, gypsum, and unaltered rounded 
feldspar grains that are smaller than associated rounded 
quartz grains in the basal Sylamore sandstone (Pittenger, 
1981) also indicate that the region was arid during the 
Late Devonian. In addition, the presence of the biomarker 
gammacerane in organic carbon-rich Woodford samples 
(Romero and Philp, 2012) documents hypersalinity with-
in the basin. Pyrogenic biomarkers documented in Wood-
ford Shale imply that paleo-wildfires were widespread 
across the southern midcontinent during the Late Devoni-
an (Philp and DeGarmo, 2020) and suggest that drought 
conditions common in arid and semiarid climates were 
characteristic of the region. Also, the inertinite maceral 
fusinite, derived from the charring of wood, is commonly 
observed in the Woodford Shale and is consistent with 
frequent paleo-wildfires (Liu and others, 2020).

Regional hypersalinity and aridity during Woodford 
Shale deposition is also supported by the presence of 
anhydrite and length-slow chalcedony in primary sedi-
mentary structures and by penecontemporaneous detri-
tal dolomite in fine-grained graded layers within organ-
ic-rich mudstones in the Permian Basin (Comer, 1991). 
Likewise, Upper Devonian (Famennian) strata in the 
Williston Basin, which occupied the same southern trop-
ical zone as Woodford Shale, contain evaporites (mostly 
anhydrite), penecontemporaneous dolomite, mud- and 
clast-supported breccias, desiccation cracks, sedimentary 
structures indicative of rapid deposition from waning cur-
rents (graded layers and climbing ripples), and a number 
of other features that represent deposition in an overall 
arid climate that was interrupted by periodic storms and 
was strongly influenced by hypersaline brines (Franklin 
and Sarg, 2018; Garcia-Fresca and others, 2018).

Paleoceanography: Characteristic features of black 
shale in the Woodford, such as the high TOC content, 
abundant pyrite, and parallel laminae, indicate that bot-
tom waters were stagnant and anoxic during deposition. 
Elevated concentrations of vanadium (V) and molybde-
num (Mo), which increase in marine sediments under 
anoxic and euxinic conditions, document prolonged pe-
riods of sea floor stagnation during Woodford deposition 
(Turner and Slatt, 2016). Analysis of aryl isoprenoid bio-
markers confirms that the middle unit of the Woodford 
Shale was deposited under persistent photic zone anoxia 
and euxinia, while the lower and upper units were depos-
ited mostly under dysoxic to suboxic conditions with ep-
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isodes of photic zone anoxia/euxinia (Romero and Philp, 
2012; Slatt and others, 2012; Philp, 2014; Connock and 
others, 2018; Philp and DeGarmo, 2020). In contrast, the 
abundance of pelagic marine microfossils (e.g., Radiolar-
ia and Tasmanites) and marine (Type II) organic matter 
indicates that surface waters supported a thriving marine 
biota. Stagnant, poorly oxygenated bottom conditions co-
existing with fertile, highly productive surface waters re-
quire strong water column stratification. The presence of 
the biomarkers gammacerane and isorenieratane is also 
indicative of water column stratification (Nowasczewski, 
2011; Romero and Philp, 2012). The arid climate and hy-
persalinity indicators imply that a persistent pycnocline 
developed between warm, normal-marine surface water 
and cold, hypersaline bottom water. Bottom anoxia de-
veloped because oxygen was rapidly consumed by decay 
of the large volume of organic matter and because density 
stratification prevented vertical mixing. Thus, Woodford 
Shale is the product of optimum conditions for both high 
primary biological productivity and effective labile or-
ganic matter preservation. This is especially evident for 
the middle member of the Woodford Shale because it has 
the highest TOC concentrations, the highest proportion 
of oil generative organic matter of pelagic origin, and 

the most persistent biomarker indicators of photic zone 
anoxia and both anoxic and euxinic conditions (Rome-
ro and Philp, 2012; Slatt and others 2012; Turner and 
Slatt, 2016).

High biological productivity over such a large geo-
graphic area for a prolonged period of geologic time re-
quires efficient circulation of surface water and a region-
ally continuous supply of nutrients. Upwelling along the 
Late Devonian continental margin (Figure 9), document-
ed by the thick accumulations of biogenic silica (e.g., 
Arkansas Novaculite), was the most likely source of nu-
trients. There is no evidence of large perennial rivers dis-
charging into the basin (i.e., deltas, fans, or coarse clastic 
wedges) that would indicate a significant, sustained ter-
restrial source. The circulation model in Figure 10 shows 
a negative water balance required by eustatic rise with 
upwelled ocean water moving into the basin primarily 
as counter currents. Southeast trade winds, the Coriolis 
force, and Ekman circulation would force surface water 
to flow out of the basin. Net evaporation of surface wa-
ter, particularly over shallow-water shelves, platforms, 
and shoals, would produce dense hypersaline brine that 
would sink to the bottom of the water column. The nega-
tive water balance from eustatic rise would be amplified 
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Figure 10. Block diagram illustrating water circulation during Late Devonian eustatic highstand when the middle 
unit of Woodford Shale was deposited (modified from Comer, 2008). Negative water balance is sustained by rising 
sea level and by the replacement of water lost through net evaporation and surface water outflow. Nutrients from a 
zone of coastal upwelling are continually swept into the epeiric sea with countercurrents and maintain high biological 
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column and establishes strong density stratification and a persistent pycnocline. Anoxic and euxinic bottom conditions 
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by the removal of surface water via wind-driven currents 
and evaporation, causing inflowing counter currents to 
be stronger than outflowing surface currents (Figure 10). 
The model thus provides an explanation for the continu-
ous re-supply of nutrients required to support high bio-
logic productivity throughout the region, even during eu-
static highstand when emergent land areas were limited, 
low lying, and widely scattered (Figure 9c).

Depositional Processes: Figure 11 illustrates the depo-
sitional processes and resulting lithofacies for the pelag-
ic, terrigenous, and authigenic (penecontemporaneous) 
sediments in Woodford Shale. The depositional model 
accounts for the regional continuity of almost exclusive-
ly fine-grained sediment, large contributions of pelagic 
marine components, absence of deltas and fans, areally 
and stratigraphically restricted occurrences of sandstone, 
graded siltstone layers, both sharp and gradational lam-
ina and bed contacts, hybrid detrital mixtures of quartz 
and dolomite, presence and distribution of evaporites, 
high TOC concentration, widespread occurrence of un-
disturbed parallel laminae, interlaminated and varvelike 
siltstone/shale couplets, paucity of body fossils and skel-
etal debris, and infrequent and stratigraphically limited 
bioturbation. These features are interpreted to represent 
periods of fair weather and storm sedimentation in a 
strongly stratified epeiric sea along an arid passive conti-
nental margin that experienced persistent coastal upwell-
ing (Figure 11).

Storms were likely frequent and geologically signifi-
cant events because the Woodford epeiric sea was locat-
ed in the tropics. Frequent storms are the most plausible 
mechanism for explaining the re-suspension and hybrid-
ization of fine-grained sediments and the generation of 
turbid bottom flows that produced fine-grained graded 
layers and Bouma sequences (Comer, 1991). Mecha-
nisms known to trigger turbid bottom flows include (1) 
dense, sediment-laden discharge from deltas, submarine 
fans, and rivers in flood, (2) spontaneous slumping of rap-
idly deposited, unconsolidated sediment, (3) slope failure 
resulting from earthquakes, and (4) sediment liquefac-
tion and autosuspension during storms (Walker, 1984). 
The absence of deltas, submarine fans, and coarse clastic 
wedges in Woodford Shale precludes the first two mech-
anisms. Earthquakes may have triggered some turbid bot-
tom flows, but the subtlety of structural displacement in 
Oklahoma during the Late Devonian indicates that such 
events were weak and infrequent. Hence, storms would 
have been the most dominant, frequent, and powerful 
agents of sediment transport in the warm Late Devonian 

tropics. Storm-generated depositional features described 
in the Upper Devonian (Famennian) Three Forks For-
mation of the Williston Basin (Franklin and Sarg, 2018; 
Garcia-Fresca and others, 2018) offer corroboration for 
the significance of storms in the southern tropics during 
the Late Devonian.

During fair weather (Figure 11a), high biologic pro-
ductivity in the upper water column created an abundant 
supply of organic carbon-rich debris. This pelagic debris, 
along with inorganic material suspended in the water 
from erosion along the shoreline, discharge of the few 
small intermittent rivers and streams, fallout of dust from 
the atmosphere, and sediment re-suspended by intraba-
sinal currents, slowly settled to the floor of the epeiric 
sea. Deposition of this diverse mixture of material was fa-
cilitated by biogenic pelletization and flocculation (Com-
er, 1991, 2008; Slatt and O’Brien, 2011; Bernal, 2013). 
These processes produced the characteristic lithofacies 
shown at the bottom of Figure 11a, including (1) biotur-
bated silty mudstone in the most hypersaline shallow-wa-
ter settings, often with dolomite and occasionally with 
sulfate evaporates, (2) less bioturbated silty mudstone 
with discontinuous to lenticular laminae in areas of deep-
er water, and (3) black mudstone with parallel laminae, 
pyrite, and less silt in regions below the pycnocline. The 
mudstone in all three lithofacies is organic carbon-rich 
with the highest TOC content in mudstone deposited 
beneath anoxic and euxinic bottom water. Fair weather 
sedimentation was relatively slow and continuous.

Periods of fair-weather sedimentation shown in Figure 
11a were punctuated by deposition of biogenic (mostly 
radiolarian) chert. Episodes of enhanced biogenic sili-
ca production and preservation are recorded as biogenic 
chert cyclicly interlayered with organic carbon-rich mud-
stone. The cause of this biogenic silica cyclicity in Wood-
ford Shale is not well understood. In general, anomalous-
ly high concentrations of biogenic silica are interpreted 
as evidence of nutrient-rich water upwelling in ancient 
seas (Parrish and Barron, 1986; Hein and Parrish, 1987) 
and have been attributed to eutrophic water conditions 
(Racki and Cordey, 2000). Biogenic chert interlayers 
represent siliceous plankton blooms possibly caused by 
abrupt changes in upwelling that are perhaps related to 
climatic fluctuations and sea level changes (Racki and 
Cordey, 2000). Biomarker data for some of the Woodford 
Shale samples collected in the McAlister Cemetery Quar-
ry suggest that a large influx of weathered and burned ter-
rigenous organic matter supplemented surface water nu-
trients and contributed to eutrophication, stimulated algal 
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Figure 11. Schematic cross sections showing deposition of clastic detritus in the Woodford epeiric sea during the 
Late Devonian. (a) Fair weather sedimentation (modified from Stow and others, 2001; Comer, 2008) showing three 
representative Woodford lithofacies and the inferred setting in which each was deposited. (b) Storm sedimentation 
(modified from Walker, 1984; Comer, 2008) showing an example of a storm-generated turbidity current and resulting 
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blooms, and resulted in a period of persistent photic zone 
anoxia/euxinia (Philp and DeGarmo, 2020). Roberts and 
Mitterer (1992) suggested that the chert-black shale cou-
plets in Woodford Shale represent pulses of high biogenic 
silica productivity superimposed on continuous organic 
carbon-rich mud deposition and that the cyclicity may 
have been caused by external orbital forcing (Milanko-
vitch cycles). The increasing thickness of biogenic chert 
layers in Woodford Shale toward the southeast indicates 
that high biogenic silica productivity was sustained by 
nutrients supplied from the coastal upwelling occurring 
along the continental margin. The decrease in biogen-
ic chert toward the northwest may simply be due to the 
fact that progressively less biosiliceous sediment was 
deposited farther from the area of highest productivity in 
the zone of coastal upwelling. Progressive depletion of 
siliceous plankton through deposition and by the atten-
uation of nutrient spikes would occur as upwelled water 
flowed and circulated farther into the basin away from 
the upwelling center. Also, the distal deepening of the 
basin toward the continental margin favors biogenic sili-
ca preservation because a deeper sea floor would be less 
disturbed by storms. In contrast, proximal areas would 
receive more terrigenous sediment, less biogenic silica 
because of the greater distance from the zone of coastal 
upwelling, and more hybrid sediments produced by au-
tosuspension, mixing, and dilution of biogenic silica with 
clastic sediments during storms. The increasing abun-
dance of biogenic chert higher in the section (Kirkland 
and others, 1992; Becerra and others, 2018; Ghosh and 
others, 2018; Galvis and others, 2018) may reflect chang-
es in coastal upwelling (Racki and Cordey, 2000) or may 
record increasing dissolved silica concentrations in up-
welled water with the closer approach of the Gondwana 
convergent margin. Elevated silica concentrations in sea 
water arising from volcanic and hydrothermal venting 
have been observed to facilitate enhanced biogenic silica 
productivity, and biogenic cherts from widely different 
locations and geological ages are associated with volca-
nic deposits (Racki and Cordey, 2000). The absence of 
beds of volcanic material in the Woodford Shale has been 
cited as evidence that biosilica blooms were not caused 
by episodic enrichment of dissolved silica from magmat-
ic sources in or near the Woodford epeiric sea during the 
Late Devonian (Lowe, 1975). However, anomalously 
high mercury (Hg) concentrations, which are indicative 
of large-scale volcanism, have recently been documented 
in the biogenic chert beds of the uppermost Woodford 
Shale at the McAlister Cemetery Quarry (Cullen, 2020). 

These new data suggest that volcanic processes for both 
silica enrichment and cyclic biogenic silica deposition 
cannot be ruled out. A full understanding of processes 
controlling the cyclicity of biogenic cherts in the Wood-
ford Shale requires further research, however, because 
currently available data are inconclusive.

Deposition of sediment from storm-generated currents 
(Figure 11b) can explain the graded siltstone layers, fine-
grained Bouma divisions, detrital mixtures of quartz and 
dolomite, transported penecontemporaneous dolomite, 
bioturbation primarily in coarser-grained detrital lay-
ers, and clastic sediment bypassing of distal slopes and 
highs (Francis, 1988; Comer, 1991, 1992, 2008). Storms 
transport large volumes of sediment flushed from nearby 
land areas and re-suspended from unconsolidated sedi-
ment on the sea floor and in restricted shoals. Storms can 
generate turbid bottom flows through the action of wind-
forced currents (Morton, 1981), ebb currents produced by 
storm surge setup (Nelson, 1982), and seaward-flowing 
currents caused by coastal downwelling (Swift and oth-
ers, 1983). In Figure 11b, storm winds created coastal 
setup and cyclic wave loading liquefied the substrate, 
creating a dense, turbid bottom flow. Some of the finer 
material in this density current was diverted along the 
pycnocline forming a detached turbid plume, while the 
main denser body of the current disrupted and passed 
below the pycnocline (Figure 11b). The density of these 
storm-generated currents would have been increased by 
the flushing of shallow-water hypersaline environments, 
resulting in very dense bottom flows consisting of sed-
iment-laden brine. Briny bottom flows would maintain 
their integrity below the pycnocline even in strongly 
stratified basins. Deposition from bottom flows result-
ed in turbidite-like beds (Figure 11b), which differ from 
classical sandy turbidites only in the fine grain size and 
the scarcity of bioturbation in the shale at the top of the 
sequence. Where present, bioturbation is best developed 
in the coarser, silty layers, indicating that the sea floor 
was briefly inhabited by organisms after deposition. This 
observation suggests that briny bottom flows originating 
in shallow-water environments transported some living 
benthos and entrained enough oxygen to temporarily sus-
tain burrowing activity for a short time after sediment 
deposition. The horizontal trace fossils that occur along 
some bedding surfaces in Woodford Shale represent brief 
episodes during which the sea floor supported a limit-
ed benthos (Coleman and Jordan, 2018; Zou and Slatt, 
2015). Ephemeral episodes of oxic-suboxic-dysoxic bot-
tom conditions sufficient to support a limited benthos are 
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indicated because bioturbation in Woodford Shale rarely 
results in total disruption of the rock fabric. Anoxia re-es-
tablished quickly because oxygen was rapidly depleted 
by respiration of the sparse fauna, decay of organic mat-
ter, and absence of oxygen resupply. Elsewhere, organic 
carbon-rich black mud with parallel laminae (Figure 11b) 
continued to accumulate in bypassed and distal areas be-
yond the reach of bottom flows. Storm sedimentation was 
episodic and rapid.

Depositional processes represented in Figure 11 also 
include fallout of fine-grained particles transported to the 
basin as atmospheric dust (including silt- and clay-sized 
particles transported in dust storms and paleo-wildfire 
smoke clouds), fallout of fine particles entrained along 
the pycnocline, and the rain of pelagic debris from the 
upper part of the water column where biologic produc-
tivity was high. Some of the thin varve-like siltstone and 
shale laminae commonly observed in Woodford Shale 
may represent mud turbidites or storm layers too small or 
far from the source to produce grading and recognizable 
Bouma divisions, while others are likely due to episodic 
fallout of windblown particles and fine-grained debris 
entrained along the pycnocline. Entrainment of muddy 
water along isopycnals has been observed in nature and 
reproduced in flume experiments (Pierce, 1976; Rimoldi 
and others, 1996), and sediment plumes detached from 
the sea floor disperse over a much wider area than tur-
bidity currents flowing along the sea bed (Rimoldi and 
others, 1996). Episodic settling of particles from muddy 
plumes widely dispersed along the pycnocline is a likely 
mechanism for producing the varve-like laminae docu-
mented in the Woodford Shale by Comer (1991, 2008) 
and by Kirkland and others (1992). Similar fine-grained 
laminae occurring in the eastern Mediterranean Sea have 
been attributed to this same depositional process (Maldo-
nado and Stanley, 1978; Stanley, 1983). These observa-
tions suggest that not all terrestrial/pelagic transitions in 
organic carbon-rich mudstone intervals of the Woodford 
Shale represent transgressive-regressive cycles produced 
by sea level fluctuations. Some may result from episod-
ic deposition of terrestrial components transported long 
distances by winds, sediment-laden currents diverted 
along the pycnocline, and dense bottom currents gener-
ated by storms. Based on the significance of these pro-
cesses during the Late Devonian, attributing intervals of 
increasing terrestrial influence exclusively to transgres-
sive-regressive cycles and sea level fluctuations would 
be too simplistic to capture the complexity of processes 
contributing to Woodford Shale deposition.

While the depositional model presented here is con-
sistent with much of the data collected on the Woodford 
Shale, recent studies continue to add new high-resolution 
data with the goal of providing better methods for identi-
fying zones from which hydrocarbons can be efficiently 
and cost-effectively produced. These data are providing 
more detailed information about the variations in condi-
tions during Woodford deposition and early diagenesis 
and they will undoubtedly increase our understanding of 
the environment in which these rocks formed. Construct-
ing a depositional model for Woodford Shale is compli-
cated by the fact that there are no modern analogs for 
euxinic epeiric seas on stable cratons along arid passive 
continental margins adjacent to the open ocean where or-
ganic carbon-rich mud associated with abundant biogenic 
silica and transitioning laterally to biogenic novaculite is 
being deposited. In the context of understanding Earth 
history, continued study of these rocks will provide broad 
insights into the sedimentary environments possible at 
the Earth’s surface that cannot be visited today.

WOODFORD SHALE AS HYDROCARBON 
SOURCE ROCK

Hydrocarbon Source Rocks in Oklahoma

Hydrocarbon source rocks are fine-grained organic-rich 
rocks, commonly identified as black shale (the term shale 
is used as a general term equivalent to mudrock and mud-
stone), capable of generating petroleum (Peters and oth-
ers, 2010). Ulmishek and Klemme (1990) and Klemme 
and Ulmishek (1991) included the Woodford Shale in a 
list of hydrocarbon source rocks of the world.

Much of the oil generated in a hydrocarbon source rock 
does not migrate out of the rock. Hydrocarbon source-
rock shales typically have very small pore volumes, very 
low permeability, and very small grains with high surface 
areas on which hydrocarbons are adsorbed (Hill and oth-
ers, 2007). Meyer (2012, p. 72) estimated that 8 barrels of 
oil equivalent remains in the source rock for every barrel 
of crude oil in conventional reservoirs and “Speculative 
estimates of just how much generated oil remains in shale 
source rocks range between 45% and 95% depending on 
the geology of the formation and the quality of the esti-
mate.” Comer and Hinch (1987) calculated between 27 to 
33% of the oil generated in Woodford Shale in southern 
and central Oklahoma was expelled from the source rock, 
indicating that 67 to 73% remains trapped within the for-
mation. The recovery factor (ratio of produced hydrocar-
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bons to total estimated hydrocarbons-in-place) of oil and 
gas from shale resource plays is on the order of 25% for 
dry gas reservoirs and 2-10% for oil reservoirs (Zoback 
and Kohli, 2019, p. 20). A carbon-rich pyrobitumen res-
idue (i.e., post-oil solid bitumen) results from the ther-
mal cracking of oil to gas (Jarvie and others, 2007). The 
amount of oil that is lost along the migration pathways 
and from surface seeps is inherently difficult to estimate.

Among the hydrocarbon source rocks identified in 
Oklahoma, the Woodford Shale is arguably the most im-
portant because of its distribution, thickness, and organic 
richness. Johnson and Cardott (1992) evaluated the avail-
able organic geochemical data of all known hydrocar-
bon source rocks of Oklahoma and included the Wood-
ford Shale in the following list: Simpson Group, Sylvan 
Shale, Woodford Shale, Springer Formation, Morrowan, 
and Upper and Middle Pennsylvanian shales (Figure 
2). An additional hydrocarbon source rock that was not 
considered is the Mississippian Caney Shale (Schad, 
2004; Andrews, 2007; Cardott, 2005, 2017). The Upper 
Mississippian Goddard Formation and unnamed Lower 
Mississippian mudrocks have been recently identified as 
important hydrocarbon source rocks and potential hy-
drocarbon source-rock reservoirs (Spears, 2016; Cardott, 
2017; Pearson and Philp, 2019; Symcox and Philp, 2019; 
Al Atwah and others, 2019). The middle division of the 
Upper Devonian Arkansas Novaculite in the frontal zone 
of the Ouachita Mountains Uplift is also a document-
ed hydrocarbon source rock (Comer, 1992; Johnson and 
Cardott, 1992) and Woodford-type oil is produced from 
naturally fractured Arkan-
sas Novaculite in the Isom 
Springs Field.

The Woodford Shale was 
confirmed to be a hydro-
carbon source rock based 
on numerous oil-to-rock 
correlation studies dating 
from the 1950s (Comer, 
1992 and references there-
in). Jones and Philp (1990) 
concluded that 85% of 30 
oils sampled in the Pauls 
Valley area of the Anadarko 
Basin were sourced by the 
Woodford Shale. Wavrek 
(1992) correlated oils to 
hydrocarbon source rocks 
from the Ardmore and 

Marietta Basins and determined that, of seven oil types 
identified, oil type C from the Woodford Shale had the 
highest frequency distribution. Wang and Philp (1997, 
2001) used the Woodford Shale as a reference for com-
parison with rock and oil samples of the Viola, Sylvan, 
Mississippian Lime, Springer, Chester, and Morrow as 
other potential hydrocarbon source rocks in the Anadarko 
Basin. Modeling by Gaswirth and Higley (2013) showed 
that 83% to 96% of the petroleum from Hunton Group 
reservoirs in the West Edmond field was sourced by the 
Woodford Shale. Based on 4D petroleum system model-
ing of the Anadarko Basin, Higley (2013) concluded that 
the Woodford Shale was an important petroleum source 
rock for oil in Mississippian reservoirs. Rahman and 
others (2017) concluded that oil production from several 
Woodford Shale wells in the northern Anadarko Basin in-
cluded migrated hydrocarbons from a deeper, higher ther-
mal maturity Woodford source. Wang and Philp (2019) 
further documented that Woodford Shale is a major 
source of in-situ, mixed, and migrated oil in modern un-
conventional oil-producing wells in north-central Okla-
homa. Al Atwah and others (2019) and Atwah and others 
(2019) suggested a complex hydrocarbon charge history, 
including long-distance migration of a mixed Woodford/
Mississippian source, for oils recovered from the Missis-
sippian on the Anadarko Shelf. In a geochemical study 
of 172 produced oils from four different reservoir forma-
tions across 13 counties in the Anadarko Basin, Symcox 
and Philp (2019) concluded that much of the produced 
oil from STACK/SCOOP (Figure 12) Mississippian tight 
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reservoirs was sourced by the Woodford Shale. Abrams 
and Thomas (2020) concluded that produced oils from 
the eastern portion of the SCOOP area may include an 
additional migrated charge from down dip Woodford 
source rocks. Wang and others (2020) identified three 
petroleum systems in Woodford-Mississippian tight res-
ervoirs in central Oklahoma: Group 1 condensates in the 
northern Anadarko Basin were Woodford-sourced gener-
ated in-situ, Group 2 oils east of the Nemaha Uplift share 
Mississippian and Woodford source signatures and were 
probably generated in-situ, and Group 3 oils north of the 
Arbuckle Uplift probably migrated long distances from 
deeper Woodford Shale.

Comer and Hinch (1987) documented the presence of 
numerous small-scale oil accumulations within thermal-
ly mature intervals of the Woodford Shale and argued 
that these accumulations are prima facie evidence for 
internal migration and expulsion of hydrocarbons from 
this source rock. By comparing the amount of hydrocar-
bons in highly compacted black shale beds (Figure 5g) 
interlayered with uncompacted, early-cemented biogenic 
chert beds (Figure 5h), both containing Type-II kerogen 
at the same level of thermal maturity, Comer and Hinch 
(1987) calculated that approximately 27% to 33% of the 
oil generated in Woodford Shale was expelled in central 
and southern Oklahoma (an area of 23,000 mi2 [60,000 
km2] with roughly 20 billion barrels of oil-in-place), thus 
indicating that 67% to 73% remains trapped within the 
formation. Comer (1992, p. 72) stated that published esti-
mates suggest “70-85% of the oil produced in central and 
southern Oklahoma…originated in the Upper Devonian 
Woodford Shale.” It is worth noting that this approach of 
comparing the content of early sealed chert and highly 
compacted black shale in interbedded intervals could also 
be used to test the assumption that certain metals (e.g., 
V, Mo, Ni) deposited with organic carbon-rich sediment 
remain unchanged throughout burial diagenesis and are 
directly indicative of oxic versus anoxic and euxinic dep-
ositional environments.

While Woodford-type oil is often produced from reser-
voirs in close proximity to the source rock (Reber, 1988; 
Wavrek, 1992; Atwah and others, 2019; Wang and Philp, 
2020), long-distance migration of Woodford-sourced oils 
from the Anadarko Basin to Kansas is inferred based on 
the long distances between the fields that produce Wood-
ford-type oil at low thermal maturity and the nearest 
Woodford Shale source beds which are in the main stage 
of oil generation (Burruss and Hatch, 1989; Newell and 
Hatch, 2000; Beserra, 2008; Gaswirth and Higley, 2013; 

Higley, 2013, 2014; Tamborello, 2020). Appendix 1 pres-
ents a bibliography on the Woodford Shale, including 
papers which document the Woodford Shale as a hydro-
carbon source rock.

Hydrocarbon Source Rock Characterization

Hydrocarbon source rocks are evaluated based on or-
ganic matter concentration, type, and thermal maturity 
(Curiale and Curtis, 2016). Programmed pyrolysis is 
the most common method used to evaluate hydrocarbon 
source potential. For an explanation of programmed py-
rolysis data, see Peters (1986), Peters and Cassa (1994), 
Peters and Rodriguez (2017), and Dembicki (2009, 
2017). Thick shale intervals with as little as 0.5 wt.% 
total organic carbon (TOC) may be considered poten-
tial hydrocarbon source rocks (Tissot and Welte, 1984, 
p. 497). However, rocks with higher TOC, generally >2 
wt.% TOC, are considered to be prolific source rocks 
with consistently greater hydrocarbon source potential, 
if organic matter type and thermal maturity are adequate 
(Jarvie, 2012a; Curiale and Curtis, 2016; Peters and oth-
ers, 2016; Dembicki, 2017; Juliao and others, 2017). Oil 
and gas are generated from source rocks containing Types 
I and II kerogen. Primarily gas is generated from source 
rocks containing Type III kerogen. Thermal maturity re-
lates generally to the kinetics of hydrocarbon generation, 
with oil (high molecular weight hydrocarbons) being 
generated at lower temperatures and gas (low molecular 
weight hydrocarbons) being generated at higher tempera-
tures. Oil and gas are generated by breaking of bonds in 
kerogen, with solid bitumen (see pre-oil solid bitumen 
discussion below) as an intermediary between kerogen 
and oil, and by cracking of high molecular weight hydro-
carbons as temperature increases with deep burial (Cu-
riale and Curtis, 2016). Consequently, gas (thermogenic 
methane) will also be generated from oil-prone source 
rocks containing Types I and II kerogen during the later 
stages of generation at high thermal maturity. Hydrous 
pyrolysis experiments by Lewan (2002) indicated that, in 
addition to being oil generative, Types I and II kerogen 
generate 1.8 times as much thermogenic methane as Type 
III kerogen. Furthermore, co-generation of some natural 
gas also occurs during the generation of oil from Type I 
and Type II kerogens. Hydrous pyrolysis of Woodford 
Shale samples from the outcrop along Interstate-35 on 
the south flank of the Arbuckle Uplift yielded a gas/oil 
ratio between 1,000 and 1,600 standard cubic feet of gas 
per barrel of oil during the early stages of oil generation 
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(Lewan and Henry, 1999).
Microbial (biogenic) methane is generated by anaero-

bic degradation of organic matter in-situ, and microbial 
methane accumulations associated with coal beds and or-
ganic-rich mudstones are typically found in subsurface 
settings that have received meteoric water recharge (Ty-
ler and others, 1997; Martini and others, 2008). Microbial 
methane has been documented in other Upper Devonian 
black shales in the USA, including the Antrim Shale in 
the Michigan Basin and the New Albany Shale in the 
Illinois Basin (Martini and others, 1998, 2003; McIntosh 
and Martini, 2008; Colosimo and others, 2016). Drake 
and Hatch (2021) described the Woodford Shale Biogen-
ic Gas Assessment Unit in the Cherokee Platform Prov-
ince near the Ozark Uplift at depths of 1,250 ft (380 m) or 
shallower where the formation is susceptible to meteoric 
water penetrations. Gas analysis data from Staghorn En-
ergy LLC (personal communication, 2009) indicate that 
the natural gas recovered from 1,200-1,210 ft (366-369 
m) from the Woodford Shale in the 1-31 Hughes Trust 
well (API 35-145-22973; Section 31, Township 17 North, 
Range 18 East) in Wagoner County, Oklahoma, is a mix-
ture of gases of both biogenic and thermogenic origin 
based on the light carbon isotopic value for the methane 
(δ13C = -52.8 per mil) and the high concentrations of C2+ 
hydrocarbons. Wagoner County is adjacent to the Ozark 
Uplift, and the Woodford Shale in the Hughes Trust well 
is in the appropriate geologic setting to receive meteor-
ic water that entered the Woodford Shale at outcrop in 
the Ozark Uplift. Consequently, by analogy with Antrim 
Shale and New Albany Shale, microbial methane would 
be a likely component of the gas in this well. The thermal 
maturity of the Woodford Shale from the 1-31 Hughes 
Trust well (Oklahoma Geological Survey Organic Pe-
trography Laboratory (OPL) 1269) is 0.94% VRo, indi-
cating the potential for thermogenic methane generation.

Thermal maturity terms represent the stages of hy-
drocarbon generation; that is, whether a given rock has 
reached the oil generation stage (oil window), wet-gas/
condensate stage, or dry-gas (thermogenic methane) 
stage of hydrocarbon generation. Thermally immature 
hydrocarbon source rocks have not yet reached the onset 
of hydrocarbon generation and post-mature source rocks 
(which generally coincide with rocks that have under-
gone very low-grade to low-grade metamorphism; Te-
ichműller, 1987; Kwiecinska and Petersen, 2004) have 
exhausted their hydrocarbon generating capability. The 
upper limit of thermogenic methane generation is ~3% 
VRo (Taylor and others, 1998, p. 504; Mi and others, 

2018). Furthermore, shales at thermal maturities >3% 
VRo mostly have reduced gas storage and deliverability 
(Dembicki, 2014; Zagorski and others, 2017).

Knowing the types of hydrocarbons generated by a 
source rock is an important consideration in evaluating 
the risks and economics of a resource play. For rocks of 
high thermal maturity, minimum TOC “cut-off” values 
should be used with caution to determine hydrocarbon 
source potential because TOC decreases with increasing 
thermal maturity as organic carbon is lost during prima-
ry migration and expulsion of hydrocarbons (Hester and 
others, 1990a; Jarvie, 1991; Peters and others, 2016 [p. 
78]; Dembicki, 2009, 2017).

Organic Carbon Concentration

Based on 251 core and 191 outcrop samples of Late 
Devonian strata (Woodford Shale, Chattanooga Shale, 
and equivalent intervals of the Arkansas Novaculite) in 
Oklahoma and northwestern Arkansas, Comer (1992) 
indicated that the TOC ranges from <1 to 26 wt.%. Bur-
russ and Hatch (1989) reported a TOC range from 1 to 
14 wt.% for the Woodford Shale in the Anadarko Basin. 
Higley (2014) and Higley and others (2014) contoured 
the Woodford TOC data of Burruss and Hatch (1989). 
Romero and Philp (2012) and Connock and others (2018) 
reported a TOC range of 3.47 to 16.90 wt.% from a Wood-
ford Shale core at the Wyche Farm shale pit. Philp and 
DeGarmo (2020) reported a TOC range of 0.07 to 15.6 
wt.% in the McAlister Cemetery Quarry. Carr (1987) 
showed a TOC range of 0.8 to 4.2 wt.% for the Chatta-
nooga Shale (Woodford equivalent) in eastern Oklaho-
ma/western Arkansas. Comer and Hinch (1987), Roberts 
and Mitterer (1992), Paxton and Cardott (2008), Fishman 
and others (2013), Becerra and others (2018), Slatt and 
others (2018a, b), Brito (2019) and Ko and others (2018) 
showed that TOC in Woodford Shale mudstones (up to 30 
wt.% TOC; Galvis, 2017) was higher than in cherts (e.g., 
Figure 5g-h). These data indicate that TOC is highly vari-
able both vertically and laterally and dependent on sam-
ple selection. Woodford Shale and age-equivalent rocks 
from Oklahoma and Arkansas have a mean TOC value 
greater than 5 wt.% (Comer, 1992, 2005, 2008). These 
TOC data are not normally distributed but are strongly 
skewed toward the high TOC values (Comer, 1992).

Infante-Paez and others (2017) used seismic inversion 
and attribute analysis, calibrated with well logs and cut-
tings, to identify TOC sweet spots in the Woodford Shale. 
Slatt and others (2018b) related TOC to 3D seismic sur-
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veys of the Woodford Shale to illustrate TOC content 
variation geographically and stratigraphically. In general, 
the lower and middle Woodford members have the high-
est TOC content while the upper Woodford member has 
the lowest TOC content (Slatt and others, 2012, 2018a, 
b; Connock and others, 2018; Brito, 2019; Philp and De-
Garmo, 2020).

A positive correlation between organic carbon con-
centration and radioactivity was observed by Schmoker 
(1981) and used to derive organic-matter content from 
gamma-ray log API unit values for Appalachian Devoni-
an shales. Paxton and Cardott (2008) published the range 
of TOC values recorded for the major gamma-ray mark-
ers (API unit maxima) of the Woodford Shale in the Hen-
ry House Creek section located in the Arbuckle Uplift 
(Figure 13). Houseknecht and others (2014) found that 
gamma-ray values >150 API units generally correlate 
with TOC values >2% for the Woodford Shale.

Organic petrology and programmed pyrolysis data for 
the Woodford Shale samples compiled for this study are 
presented in Table 2. The programmed pyrolysis data are 
compliments of GeoMark Research, Ltd. TOC ranges 
from 0.97 to 21.9 wt.% (Figure 14) (6.4 wt.% average, 
3.2 wt.% standard deviation). Additional programmed 
pyrolysis data of Oklahoma Geological Survey Organic 
Petrography Laboratory Woodford Shale samples are in 
Craddock and others (2018).
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Figure 14. Histogram of total organic carbon (TOC) content for the Woodford Shale in Oklahoma (modified to nearest 
0.5 wt.% from Table 2).
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buckle Uplift (from Paxton and Cardott, 2008, p. 61).
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Organic Matter Type

Based on the quantitative analysis of C, H, and O in 
isolated, solvent-extracted kerogen, bulk organic matter 
in the Woodford Shale is predominantly Type II kerogen 
(oil generative) of marine origin (Figure 15) (Comer and 
Hinch, 1987). The van Krevelen diagram (Figure 15) il-
lustrates how the three main types of sedimentary organic 
matter change with increasing thermal maturity and the 
fact that the compositions of all three kerogen types con-
verge toward the lower left corner of the diagram clear-
ly shows why kerogen typing using this method should 
be done using samples of low thermal maturity (Dem-
bicki, 2017).

Programmed pyrolysis involves the temperature pro-
grammed heating of crushed rock samples in an inert at-
mosphere (Figure 16). Data derived from programmed 
pyrolysis pyrograms (including Tmax, Hydrogen Index [HI 
= S2/TOC], and Production Index [PI = S1/(S1 + S2)]) can 
be used to assess both the bulk kerogen type and thermal 
maturity. Pseudo van Krevelen plots using data from pro-
grammed pyrolysis commonly show a significant propor-
tion of Type I kerogen in Woodford Shale (Slatt and oth-
ers, 2018b; Al Atwah and others, 2019; Atwah and others, 
2020; see SR in Appendix 1). Type I kerogen is typically 
found in lacustrine hydrocarbon source rocks while Type 
II kerogen is found in marine hydrocarbon source rocks 
like the Woodford Shale (Vandenbroucke and Largeau, 

Figure 16. Example of the record produced from pro-
grammed pyrolysis. Crushed rock samples are placed in a 
vessel and heated in an inert atmosphere to determine the 
amounts of free hydrocarbons (S1), hydrocarbons formed 
by cracking of organic matter (S2), and CO2 formed from 
oxygen in the organic matter (S3). Tmax is the oven tem-
perature corresponding to the peak of the S2 curve which 
marks the maximum rate of hydrocarbon generation from 
the organic matter (from Tissot and Welte, 1984, p. 510, 
Figure V.1.10).
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2007). The Type I interpretation for the Woodford Shale 
depends on how the programmed pyrolysis data, such as 
those in Table 2, are plotted (Figure 17). The pseudo van 
Krevelen plot in Figure 17a suggests a significant amount 
of Type I kerogen, while the kerogen quality plot in Fig-
ure 17b nearly excludes Type I kerogen, similar to what 
was described by Philp and DeGarmo (2020). Dembicki 
(2009, p. 346) suggested that “if a marine source rock is 
plotting along the Type I kerogen trend on pseudo-van 
Krevelen diagrams, it likely contains Type IIS kerogen.” 
The presence of Type IIS kerogen in the Woodford Shale 
has not been confirmed.

Type III kerogen of terrestrial origin is present in sig-

nificant concentrations locally in the Chattanooga Shale 
and the Woodford Shale near the Ozark Uplift and in the 
Ouachita Mountains Uplift, respectively (Comer and 
Hinch, 1987; Comer, 1992; Burruss and Hatch, 1989; 
Johnson and Cardott, 1992). Type III kerogen in the 
Woodford Shale is also increasingly common westward 
along the Anadarko Basin axis and in the western part of 
the basin, a region proximal to the Transcontinental Arch 
which was a regional topographical high during the Late 
Devonian (Comer, 1992). Samples with higher concen-
trations of Type III kerogen generally have lower TOC 
and little or no biogenic silica, reflecting the dilution of 
pelagic marine sediments by terrigenous siliciclastics 

Figure 17. Programmed pyrolysis data of the Woodford Shale from Table 2. (a) Pseudo van Krevelen plot: Hydrogen 
Index ([S2/TOC] x 100) vs. Oxygen Index ([S3/TOC] x 100). (b) Kerogen quality plot: Production Index (S1/[S1+ S2]) 
vs. total organic carbon (TOC). (c) Source potential logs: total organic carbon (TOC), remaining hydrocarbon potential 
(S2) and Hydrogen Index ([S2/TOC] x 100) vs depth. Programmed pyrolysis data and charts are courtesy of GeoMark 
Research, Ltd.
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derived from the nearby emergent land areas (Comer, 
1992). Comer (1992) noted that increased proportions 
of terrestrial organic matter are found locally along the 
Nemaha Uplift, indicating that it was topographically 
high during the Late Devonian, and Kvale and Bynum 
(2014) showed that lower Woodford facies onlap the 
structure. Kvale and Bynum (2014) also observed that 
Woodford sediments to the west of the Nemaha Uplift 
contain more bioturbated intervals and less biogenic 
chert than those to the east. Using palynomorph assem-
blages, Molinares Blanco and others (2017a) concluded 
the upper Woodford interval contained more terrigenous 
detritus than the middle Woodford.

Visual kerogen analysis of low thermal maturity Wood-
ford Shale indicates a composition of amorphous organ-
ic matter (45-95%), vitrinite, inertinite (semifusinite and 
fusinite), liptinite (e.g., Tasmanites telalginite), zooclast 
(e.g., acritarch), and solid bitumen macerals (Lewan, 
1987; Senftle, 1989; Cardott and Chaplin, 1993; Ascent 
Energy, 2006; Turner and others, 2015; Kondas and oth-
ers 2018; Atwah and others, 2020). Abundant telalginite 
(e.g., Tasmanites) is an important source of oil generated 
in the Woodford Shale (Ko and others, 2019; Shao and 
others, 2020).

Scanning electron microscopy (SEM) can determine 
the distribution of organic matter in a shale based on 
atomic number observed in backscatter electron imaging, 
but is limited in its ability to identify organic matter type 
(Loucks and others, 2009; Slatt and O’Brien, 2011). SEM 
studies of the Woodford Shale indicate an abundance of 
amorphous organic matter, commonly observed to be 
oil-prone liptinite macerals in epifluorescent light at low 
thermal maturity, and a predominance of post-oil solid 
bitumen in reflected white light at high thermal maturity 
(Curtis and others, 2012; Fishman and others, 2013; Car-
dott and others, 2015; Ko and others, 2018).

Thermal Maturity

A wide range of organic geochemical parameters are 
affected by the thermal maturation of organic matter 
during burial and heating in the absence of oxygen in 
sedimentary basins. They can be used to determine the 
stage of hydrocarbon generation experienced by specific 
organic-rich rock samples. The most widely used thermal 
maturity parameters are acquired using programmed py-
rolysis and vitrinite-reflectance petrography. Vitrinite -re-
flectance petrography is widely considered the “gold 
standard” thermal maturity parameter for shales (Curiale 

and Curtis, 2016; Hackley and Cardott, 2016; Gentzis 
and others, 2017; Jarvie, 2017; Juliao and others, 2017; 
Horsfield and others, 2018). As summarized by Cardott 
(2012b), vitrinite is a maceral derived from woody or-
ganic matter that is found only in post-Silurian-age rocks. 
The vitrinite-reflectance value is the percentage of inci-
dent light that is reflected from polished vitrinite parti-
cles under an oil immersion objective and reported for an 
average of >20 measurements. The average of a number 
of measurements from a fixed (non-rotating) microscope 
stage is referred to as the mean random value. Reflect-
ed white light microscopy was first applied to coal in 
1913 (Hutton, 1995). The vitrinite-reflectance analysis 
was first applied to determine the rank of coals in 1932 
(McCartney and Teichmüller, 1972) and applied to the 
thermal maturity of shales in the 1950s (Taylor and oth-
ers, 1998, p. 501-505).

A number of additional parameters used to decipher 
thermal maturity are discussed in Dembicki (2017). 
Some of the more noteworthy include the following: C, 
H, O, H/C ratio, and O/C ratio from solvent-extracted 
kerogen (a plot of H/C vs O/C is known as the “van Krev-
elen diagram [see Figure 15]); thermal alteration index 
(TAI) from visual analysis of kerogen; total extractable 
bitumen/TOC ratio, saturated hydrocarbons/TOC ratio, 
and saturated hydrocarbon distribution from gas chro-
matography analysis of soluble bitumen extracted from 
source rocks. Definitions, analytical methods, and criti-
cal reviews for these parameters can be found in Jarvie 
(1991) and Dembicki (2017).

Thermal maturity implications for a number of these 
parameters obtained from analyses of samples of Wood-
ford Shale in Oklahoma, which includes presentation 
of data, discussion, and contour maps, are discussed in 
Comer (1992; 2008). Additional data and discussion of 
thermal maturity parameters for Woodford Shale may be 
found in the references included in Appendix 1.

Programmed Pyrolysis: The Source Potential Logs 
for the Woodford Shale in Figure 17c illustrate decreas-
ing TOC, oil potential (S2), and Hydrogen Index ([S2/
TOC] x 100) with increasing depth and thermal maturity. 
For Woodford Shale, the kerogen type and thermal ma-
turity plot using Hydrogen Index ([S2/TOC] x 100) and 
Tmax (temperature, °C, of S2 peak) in Figure 18a shows 
decreasing Hydrogen Index with increasing thermal ma-
turity (Tmax). With increasing thermal maturity and de-
creasing hydrogen content, the trends for kerogen Types 
I and II change compositionally to merge with the trend 
for Type III kerogen. Consequently, it is only possible to 
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assign kerogen Types I, II, and III, each having distinct-
ly different assemblages of biological source materials, 
using rock samples of low thermal maturity (<1% VRo).

The kerogen quality plot in Figure 18b shows increas-
ing followed by decreasing Production Index (S1/[S1 + 

S2]) with increasing thermal maturity (Tmax). Note that 
kerogen typing based on programmed pyrolysis becomes 
less reliable at thermal maturities >1.0% VRo as TOC, 
S2 (generally <0.5 mg HC/g rock; see Table 2) and HI 
decrease. The kerogen composition changes due to hy-

drocarbon generation (Figure 17 
and Figure 18) and as the residual 
organic matter becomes dominat-
ed by solid bitumen (Wüst and 
others, 2013; Curiale and Curtis, 
2016; Hackley, 2017; Lewan and 
Pawlewicz, 2017; Yang and Hors-
field, 2020).

Post-oil solid bitumen is the 
dominant organic matter in ther-
mally mature shales (>0.9% VRo; 
Cardott and others, 2015; Hack-
ley and Cardott, 2016; Hackley, 
2017; Liu and others, 2018). 
Post-oil solid bitumen forms a 
network, recognized under re-
flected white light and backscat-
ter electron imaging, that de-
velops secondary nanoporosity 
beginning at ~0.7% VRo, which 
provides hydrocarbon migration 
pathways and accommodates 
methane storage (Cardott and 
others, 2015; Cardott and Curtis, 
2018). Secondary intraorganic 
nanoporosity is thought to form 
from the escape of gases during 
the thermal cracking of the post-
oil solid bitumen (Bernard and 
Horsfield, 2014).

Vitrinite Reflectance: Vitrin-
ite-reflectance data of the Wood-
ford Shale have been published 
in numerous reports: Cardott and 
Lambert (1985); Carr (1987); 
Comer and Hinch (1987); Cardott 
(1989, 1994); Pawlewicz (1989); 
Cardott and others (1990); Com-
er (1992); Cardott and Chap-
lin (1993); Paxton and Cardott 
(2008); Achang and others, 
2017; Wang and Philp (2019); 
and Al Atwah and others (2019). 
Only vitrinite-reflectance data by 
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Cardott (including Cardott and Lambert [1985] and Car-
dott [1989]) are used in Table 2, including some values 
revised by Cardott for samples OPL 107-124 that were 
originally analyzed by Michael Lambert in Cardott and 
Lambert (1985). The intent of these studies was to eval-
uate the thermal maturity of the Woodford Shale as a hy-
drocarbon source rock. More detailed studies of smaller 
areas would be required to evaluate whether oil or gas 
would most likely be commercially produced from the 
Woodford Shale for a given play.

In this report, data for the reflectance of vitrinite record-
ed in combination with other macerals (e.g., semifusinite) 
has the abbreviation %Ro. Since both vitrinite and bitu-
men reflectance values are used in this report, vitrinite 
reflectance is abbreviated as %VRo and solid bitumen 
reflectance is abbreviated as %BRo. Vitrinite-reflectance 
data (Figure 19) typically follow a normal distribution 
over a range of ~0.3% VRo in the oil window and over a 
larger range at thermal maturities >1.0% VRo owing to 
vitrinite-reflectance anisotropy (Taylor and others, 1998). 
ASTM (2014) provides the details for the vitrinite-reflec-
tance analysis of shale samples. This section provides an 
expanded discussion of vitrinite reflectance and problems 
involving interpretation of this data type, because many 
of the confounding issues were observed in samples from 
the Woodford Shale and most of their resolutions were 
achieved by detailed analysis of Woodford samples.

Sources of error in the vitrinite-reflectance analysis 
discussed in Cardott (2012b) and Hackley and Cardott 
(2016) include the following: recycled vitrinite, caving 
contamination, mud additives, weathering, vitrinite-re-
flectance anisotropy, too few measurements, pitted-vi-
trinite texture, and vitrinite-like organic matter being 
mistaken for vitrinite (e.g., vitrinite maceral subtypes, 
inertinite macerals, graptolites, and solid bitumen). Pho-
tomicrographs of vitrinite, semifusinite, and solid bi-
tumen (Figure 20) illustrate the characteristics of these 
macerals in reflected white light. In the present study, 
all of the vitrinite-reflectance analyses presented in Table 
2 represent a single lithology (i.e., black shale) of Late 
Devonian age for which only limited older sources of 
recycled vitrinite were available. Caving contamination 
from uphole and drilling mud additives were recognized 
by the distinctive Woodford-type dark mineral ground-
mass in reflected white light using whole-rock pellets 
instead of kerogen-concentrate pellets (Barker, 1996). 
Alteration of kerogen due to present-day outcrop weath-
ering was avoided by using well-indurated rock samples 
(Lo and Cardott, 1995). Quantitative vitrinite-reflectance 

values are identified by samples having >20 measure-
ments; vitrinite-lean samples with <20 measurements 
are considered qualitative (ASTM, 2014). In rare cases, 
mean random vitrinite-reflectance values from regional-
ly important vitrinite-lean Woodford Shale samples with 
<20 measurements are included in Table 2. Pitted-texture 
vitrinite values were recorded to aid in identifying the 
lowest-reflectance vitrinite but were not included in the 
reported mean value.

The two most common errors are including solid bitu-
men or semifusinite, which are mistakenly assumed to 
be vitrinite, with the vitrinite-reflectance values. Sanei 
(2020) provides a detailed discussion about the genesis of 
solid bitumen. Curiale (1986) introduced the terms pre-
oil solid bitumen (defined as a thermal decomposition 
product derived from liptinite macerals in hydrocarbon 
source-rock samples that are marginally-mature to ma-
ture for oil generation) and post-oil solid bitumen (de-
fined as a solid alteration product of a once-liquid oil 
that forms in the oil window, fills fractures and pores, 

Figure 20. Photomicrographs of macerals (reflected 
white light; taken at 500x magnification). (a) vitrinite, 
OPL 1016, 0.48% VRo; (b) vitrinite, OPL 1469, 0.58% 
VRo; (c) vitrinite, OPL 1402, 1.26% VRo; (d) semifusin-
ite with bogen structure, OPL 1491, 2.23% Ro; (e) pre-
oil solid bitumen, OPL 654, 0.30% BRo; (f) pre-oil solid 
bitumen with internal reflections, OPL 603, 0.58% BRo.
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and may be an insoluble pyrobitumen) (Figure 21). Using 
hydrous pyrolysis experiments on the Woodford Shale, 
Lewan (1994) demonstrated that Type II kerogens gen-
erate (pre-oil solid) bitumen with subsequent thermal de-
composition to primary oil. Pre-oil solid bitumen is often 
observed as irregular-shaped blobs (Figure 20e, f) and 
is mostly extractable in organic solvents. Hackley and 
others (2018, p. 233) indicated that “the ‘pre-oil’ solid bi-
tumen is high viscosity organic matter rich in the heavier 
asphaltene and resin molecular components of petroleum, 
unlike a saturated hydrocarbon-rich conventional black 
or volatile oil.” Pre-oil solid bitumen is vitrinite-like 
in appearance in reflected white light especially at low 
thermal maturity (e.g., immature to early oil generation) 
(Curiale, 1986; Cardott and others, 2015; Hackley and 
Cardott, 2016; Hackley and Lewan, 2018). Solid bitumen 
has been observed filling fractures in Woodford Shale 

outcrops and core (Comer and Hinch, 1987; Paxton and 
Cardott, 2008).

Hackley and others (2013) concluded that vitrinite-re-
flectance measurements indicating Devonian shales in 
the Appalachian Basin to be in the early stage of ther-
mal maturity may erroneously include lower-reflecting 
pre-oil solid bitumen reflectance measurements, as ex-
plained further in Hackley and Lewan (2018). A good 
example of this error is in Cardott and Lambert (1985) 
and Cardott (1989). These authors reported a 0.47% Ro 
mean random value for the Jones and Pellow Oil B-2 Hall 
well (OPL 153; API 35-015-20258; Section 36, Town-
ship 7 North, Range 13 West) (Figure 22) located in the 
Wichita frontal fault zone on the north side of the Wichita 
Uplift (Northcutt and Campbell, 1996). Cardott (2015a) 
reported that the B-2 Hall well Ro value included abun-
dant vitrinite-like pre-oil solid bitumen and corrected the 

a.

b.

c.

Figure 21. Photomicrographs of post-oil solid bitumen 
network in the Woodford Shale in reflected white light. 
(a) white arrow points to speckled form (~1-2 µm); py-
rite (P); (b) white arrow points to wispy form (~2-5 µm); 
pyrite (P); (c) white arrow points to connected form (>5 
µm); pyrite (P). From Cardott and others (2015, Figure 2).

Figure 22. Reflectance histograms of OPL 153. (a) Pub-
lished value in Cardott (1989) is mostly pre-oil solid bi-
tumen reflectance (mean = 0.47% Ro; n = 262; range of 
0.22-0.86% Ro); (b) Revised vitrinite-reflectance analysis 
(mean = 0.77% VRo; n = 25; range of 0.61-0.90% VRo).
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measured vitrinite-reflectance value to 0.77% VRo by 
recounting true vitrinite. Figure 22a shows the original 
reflectance histogram with a wide range of reflectance 
values (0.22-0.86% Ro, 0.47% Ro mean) while Figure 
22b shows the re-analyzed reflectance histogram with a 
vitrinite-reflectance range of 0.61-0.90% VRo (mean = 
0.77% VRo). Macerals with reflectance values <0.60% 
Ro were interpreted to be pre-oil solid bitumen. The 0.3% 
Ro difference (i.e., 0.77% VRo – 0.47% Ro) in the means 
is the same difference predicted for bitumen and vitrinite 
reflectance means as discussed below. As an example of 
how pre-oil solid bitumen can appear vitrinite-like, pho-
tomicrographs of pre-oil solid bitumen and vitrinite are 
presented in Figure 23. Additional low thermal maturity 
samples that were re-analyzed to test for the inclusion of 
pre-oil solid bitumen reflectance values are listed in Table 
2 and plotted on Plate 3.

Prior to deposition in a marine mud, any oxidation of 
woody organic matter in the terrestrial environment will 
form the semifusinite maceral (inertinite maceral group) 
which has a higher reflectance than the associated vit-
rinite maceral. In addition to a higher reflectance, semi-
fusinite often retains the original woody structure (with 
curved and smooth walls known as bogen structure), aid-
ing in its identification (Figure 20d). Erroneously includ-
ing semifusinite reflectance in the vitrinite-reflectance 
analysis will skew the results to a higher %VRo value. 
Bogen structure of semifusinite and the typical range of 
vitrinite-reflectance values (~0.3% VRo at <1% VRo) are 
used to exclude semifusinite reflectance values from the 
mean vitrinite-reflectance value. Given the many oppor-
tunities for wood to be subaerially oxidized on its path 
to being deposited as marine sediment, it is expected 
that some slightly-altered woody organic matter (record-
ed as semifusinite with slightly higher reflectance than 

vitrinite) would be encountered during the vitrinite-re-
flectance analysis. Vitrinite-reflectance measurements of 
Woodford Shale samples <1% VRo were bracketed by 
lower reflecting pre-oil solid bitumen and higher reflect-
ing semifusinite macerals; measurements >1% VRo were 
bracketed by poorly polished (pitted-texture) vitrinite and 
semifusinite macerals.

The Woodford Shale is the oldest formation in Okla-
homa that contains woody organic matter (i.e., vitrinite) 
(Wilson, 1958). Wilson (1958) and Urban (1960) indi-
cated that fragments of Oklahoma’s oldest fossil trees 
(Callixylon whiteanum wood of the Archaeopteris pro-
gymnosperm tree; Beck, 1981; Beck and Wight, 1988) 
are found in abundance in the lower portion of the Wood-
ford Shale, and were deposited near shore. Kirkland and 
others (1992) found petrified wood in the basal section 
of the Woodford Shale in the Henry House Falls Quarry. 
The lower member of the Woodford Shale, at the start of 
the marine transgression, contains the most and largest 
(>15 µm) size vitrinite clasts. Vitrinite is rare and small 
(<8 µm) in the middle member of the Woodford Shale 
which was more distal marine. Based on biomarker anal-
ysis of the Wyche Farm core, Romero and Philp (2012) 
recognized a higher terrigenous input in the lower Wood-
ford member and a predominance of marine organic mat-
ter in the middle and upper Woodford members.

Cardott and Lambert (1985) completed the first region-
al study of the thermal maturity of the Woodford Shale in 
the Anadarko Basin of Oklahoma by analyzing samples 
from 28 wells. Isoreflectance contours in the western-
most Anadarko Basin were modified based on published 
data ranging from 2.37 to 2.54% VRo for the Woodford 
Shale in the Union Oil Company of California 1-33 
Bruner well (API 35-009-20093; Section 33, Township 
11 North, Range 25 West) reported by Katz and others 

50µm

a. b.

50µm

Pre-Oil Solid

Bitumen, 0.54% BRo

c.

50µm

Figure 23. Photomicrographs of (a) vitrinite-like pre-oil solid bitumen taken at 200x magnification, (b) same field of 
view taken at 500x magnification, and (c) vitrinite (0.64% VRo) from OPL 153.
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(1982). Those data challenged the Time Temperature In-
dex correlation to vitrinite reflectance by Waples (1980) 
who modeled a vitrinite reflectance of 4.8% VRo for the 
producing horizon (Hunton Group) in the 1-33 Bruner 
well coinciding with the last known occurrence of dry 
gas. Based on 81 wells, Cardott (1989) expanded the 
Anadarko Basin study to include the Texas Panhandle 
and included 4.05% VRo for the Woodford Shale in the 
Leede Oil and Gas 1-3 Green well (OPL 392; API 35-
009-20566; Section 3, Township 10 North, Range 25 
West). Compared to the Lone Star Producing Company 
1 Bertha Rogers well (API 35-149-20020; Section 27, 
Township 10 North, Range 19 West), the anomalously 
low vitrinite-reflectance values (2.37 to 2.54% VRo) for 
the 1-33 Bruner well reported by Katz and others (1982) 
was interpreted by Cardott (1989) to represent caving 
from younger formations containing vitrinite with a low-
er thermal maturity than the Woodford Shale. This con-
clusion was based on the following observations: 1) the 
Woodford Shale was at 27,520-27,772 ft (8,388-8,465 m) 
in the Lone Star 1 Bertha Rogers well (Rowland, 1974), 
a depth which yields a thermal maturity of 6.05% VRo 
when calculated using the vitrinite reflectance versus 
depth regression equation in Cardott (1989); 2) vitrin-
ite-reflectance data by James Urban for the Lone Star 
1 Bertha Rogers well (in Borak and Friedman, 1981, 
1982) documented caving contamination because the 
Ordovician- to Early Devonian-age samples from depths 
between ~24,000 to 31,000 ft (~7,300 to 9,500 m), which 
would not contain vascular plants, yielded values of 1.6-
2.0% VRo; and 3) measured vitrinite-reflectance values of 
the Woodford Shale (8,442-8,470 m [27,697-27,789 ft]) 
in the Lone Star 1 Bertha Rogers well in Price and others 
(1981) and Price (1997a, b) range from ~3.0 to 5.4% VRo, 
consistent with the vitrinite-reflectance data from the 1-3 
Green well (OPL 392; Section 3, Township 10 North, 
Range 25 West; 4.05% VRo).

Lack of samples and structural complexity precluded 
extending the isoreflectance contours through south-
ern Grady and northern Stephens Counties (Evans and 
others, 2018; Thomas, 2018; Miller and others, 2019; 
Abrams and Thomas, 2020). The low vitrinite-reflectance 
values (0.52-0.87% VRo) for the Woodford Shale along 
the northern boundary with the Wichita Uplift demon-
strate that Late Paleozoic deformation and uplift pre-
vented deep burial in this part of the southern Oklahoma 
aulacogen.

Cardott and others (1990) reported Woodford Shale vi-
trinite reflectance in the Arbuckle Uplift (Ham and oth-

ers, 1990) where the average value for 40 outcrop grab 
samples was 0.54% VRo (mean random reflectance val-
ues ranged from 0.35-0.77% VRo). Cardott and Chaplin 
(1993, their Table 3) summarized the organic geochemis-
try of the Woodford Shale from the Interstate-35 outcrop 
on the south side of the Arbuckle Uplift where the mean 
random vitrinite-reflectance values reported by several 
authors varied between 0.30-0.52% VRo. Concerning the 
Interstate-35 outcrop, Cardott and Chaplin (1993, p. 29) 
concluded that “excluding bitumen reflectance values, 
the mean random (whole rock) vitrinite reflectance…is 
0.50% (79 measurements with 0.43-0.66% reflectance 
range).” Ko and others (2018) calculated 0.49% VRo 
based on programmed pyrolysis of Woodford Shale si-
liceous mudstone in the Interstate-35 outcrop. Based on 
a shallow (19 ft; 5.8 m) Woodford Shale core in the Ar-
buckle Uplift, Lo and Cardott (1995) reported an average 
of 0.51% VRo (mean random reflectance values range 
from 0.46-0.55% VRo) for unweathered samples and 
0.35% VRo for a weathered surface rubble sample in the 
Highway 77D Woodford outcrop (Section 30, Township 
1 South, Range 2 East), about 7 miles north of the Inter-
state-35 Woodford outcrop. The well-indurated, very low 
permeability nature of the Woodford Shale protects the 
organic matter from weathering and sampling below the 
fissile zone in outcrop commonly provides unweathered 
samples of the Woodford Shale (Lewan, 1980). Paxton 
and Cardott (2008, p. 53) reported the mean random vi-
trinite reflectance of the Woodford Shale outcrop along 
Highway 77D on the north side of the Arbuckle Uplift 
is 0.58% VRo (based on 26 measurements ranging from 
0.48-0.72% VRo). The low thermal maturity (0.35 and 
0.42% VRo) of outcrop samples in Cardott and others 
(1990) may be related either to weathering or inclusion of 
lower reflecting pre-oil solid bitumen reflectance values 
(Curiale, 1986; Cardott and others, 2015). Philp and oth-
ers (1992) showed that weathering of Woodford outcrop 
samples had altered both hydrocarbon and stable isotopic 
compositions.

Cardott (2012a) prepared a Woodford Shale isoreflec-
tance map for eastern Oklahoma (revised in Cardott, 
2017). Woodford Shale thermal maturity ranges from 
0.49% VRo at a depth of 5,084 ft (1,550 m) in Lincoln 
County, Oklahoma, north of the Arbuckle Uplift, to 
6.36% VRo at a depth of 17,854 ft (5,442 m) in Le Flore 
County, Oklahoma.

The Woodford Shale vitrinite-reflectance map and 
data compiled for this report are in Plate 3 and Table 2. 
All of the reflectance measurements are for random (not 
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maximum) orientations of vitrinite using a fixed 
stage, Vickers M17 Research Microscope, EG&G 
Gamma Scientific DR-2 Digital Radiometer, and 
EG&G Gamma Scientific D-46AQ Photomulti-
plier (circa 1980; Cardott, 1989). Mean random 
vitrinite-reflectance values were qualitatively 
evaluated using two petrographic thermal ma-
turity indicators: (1) vitrinite reflectance equiva-
lent (VRE) calculated from measured pre-oil and 
post-oil solid bitumen reflectance values, and (2) 
fluorescence colors of Tasmanites alginite. Errors 
can be made by either not comparing vitrinite-re-
flectance results to other thermal maturity indica-
tors or assuming that vitrinite-reflectance values 
are suppressed.

VRE in Table 2 was calculated from regression 
equations in Landis and Castaño (1995) ([BRo + 
0.41]/1.09; VRE A), Schoenherr and others (2007) 
([BRo + 0.2443]/1.0495; VRE B), and Schmidt 
and others (2019) ([0.938xBRo] + 0.3145; VRE 
C), keeping in mind that VRE is based on fewer 
solid bitumen reflectance values than the mean 
random vitrinite-reflectance value. Of signifi-
cance, VRE indicates that solid bitumen was dis-
tinguished from vitrinite. Jacob (1989) measured 
solid bitumen reflectance from solid hydrocar-
bon vein deposits and noted that solid bitumen 
reflectance is less than vitrinite reflectance until 
~1% VRo, after which solid bitumen reflectance 
is higher than vitrinite reflectance. Landis and 
Castaño (1995) measured reflectance of both vi-
trinite and solid bitumen co-occurring within the 
shale and found solid bitumen reflectance is less 
than vitrinite reflectance until ~4% VRo. Schoen-
herr and others (2007) combined the datasets of 
Jacob (1989) and Landis and Castaño (1995) to 
derive their equation. Combining nine published 
datasets, Schmidt and others (2019) noted that 
solid bitumen-reflectance values are lower than 
vitrinite-reflectance values until 4.5% VRo.

Figure 24a compares 210 pairs of co-occur-
ring mean random vitrinite and solid bitumen 
reflectance values measured in samples of the 
Woodford Shale from Table 2 (equation 1) (VRE 
= [BRo + 0.3118]/1.0713 [coefficient of determi-
nation R2=0.9749]; VRE D). Note that vitrinite- 
reflectance values <1.6% VRo follow one trend 
(mostly pre-oil solid bitumen; solid bitumen re-
flectance is less than vitrinite reflectance). Vitrin-
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Figure 24. Measured mean random vitrinite reflectance and sol-
id bitumen reflectance pairs. (a) Woodford Shale data in Table 
2.  Mean random solid bitumen reflectance values are based on 
fewer measurements than the mean random vitrinite-reflectance 
values. (b) Comparison of published vitrinite reflectance equiva-
lent (VRE) equations: Jacob (1989) (VRE = [0.618 x BRo] + 0.40); 
Landis and Castaño (1995) (VRE = [BRo + 0.41])/1.09); Schoen-
herr and others (2007) (VRE = [BRo + 0.2443]/1.0495); Schmidt 
and others (2019) (VRE = [0.938 x BRo] + 0.3145); Woodford 
(this study) (VRE = [BRo + 0.3118]/1.0713).
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ite reflectance values >1.6% VRo have a wider spread, 
mostly due to both solid bitumen and vitrinite-reflectance 
anisotropy, and follow a different trend (all post-oil solid 
bitumen; solid bitumen reflectance is slightly less than vi-
trinite reflectance). Mastalerz and Drobniak (2019) used 
1.5% BRo as the boundary between solid bitumen and 
pyrobitumen. Table 2 (VRE D) includes VRE calculated 
from equation 1.

Figure 24b compares published VRE equations with 
equation 1 for the Woodford Shale (regression line in Fig-
ure 24a). The regression line from Jacob (1989) crosses 
the 1:1 regression line at 1%. The other regression lines 
fall below the 1:1 regression line (i.e., solid bitumen re-
flectance is less than VRE) well into the dry gas window 
(4% VRo), with solid bitumen reflectance getting closer 
to vitrinite reflectance equivalent with increasing thermal 
maturity. The regression line from equation 1 (Woodford) 
is closest to the regression line from Schmidt and others 
(2019). The slope of the Jacob (1989) regression line may 
be different from the slopes of the other regression lines 
due to inclusion of solid bitumen reflectance values from 
solid hydrocarbon vein deposits (asphaltite and asphaltic 
pyrobitumen) external to the shale.

Tasmanites alginite qualitative fluorescence colors 
change from green to orange with increasing thermal 
maturity before fluorescence is extinguished at 0.9-1.0% 
VRo (Taylor and others, 1998, p. 137). Based on Table 
2 for the Woodford Shale, green to greenish-yellow flu-
orescence corresponds to 0.49-0.74% VRo, yellow flu-
orescence corresponds to 0.70-0.77% VRo, and orange 
fluorescence corresponds to 0.82-0.98% VRo (although 
alteration from weathering can also result in orange flu-
orescence; see Table 2, 0.64-0.74% VRo).

There are two thermal maturity anomalies in the sub-
surface on the Woodford Shale isoreflectance map in 
northern Oklahoma on Plate 3 that are not consistent 
with the Woodford Shale structure map on Plate 1. A 
greater anomaly (mean random vitrinite-reflectance val-
ues >1.0% VRo) in Osage County, Oklahoma, on the 
Cherokee Platform, and a lesser anomaly (>0.8% VRo) 
in Garfield County, Oklahoma, on the Anadarko Shelf 
are suggestive of igneous hot spots affecting post-Wood-
ford deposition. These thermal anomalies coincide with 
broad gravity high anomalies in residual Bouguer gravity 
from basement rocks related to the Mid-Continent rift 
system (Elebiju and others, 2011; Cardott, 2015b; Crain 
and Keller, 2016; Chopra and others, 2018). The variable 
nature of Woodford Shale thermal maturity in north-cen-
tral Oklahoma is the reason for the deflection in the 0.6% 

VRo isoreflectance contour between western and eastern 
Oklahoma. The Woodford Shale is at a thermal maturi-
ty level of 0.77% VRo in the Devon Energy 1-33 Frank 
SWD well (OPL 1455; API 35-083-23957; Section 33, 
Township 19 North, Range 2 West) in Logan County, 
Oklahoma. A lower value of 0.57% VRo reported by Car-
dott and Lambert (1985) and Cardott (1989) from the 
nearby Bobby J. Darnell 1 Kindschi well (OPL 114; API 
35-083-21423; Section 14, Township 19 North, Range 2 
West) is interpreted to be based on caving contamination 
(Table 2). Achang and others (2017) calculated 0.56% 
VRo based on programmed pyrolysis of the Woodford 
Shale in the Sundown Energy LP 1-28 Danker well in 
Lincoln Co. (API 35-081-23817; Section 28, Township 
14 North, Range 3 East), in agreement with nearby mea-
sured vitrinite-reflectance data.

Thermal maturity of the Woodford Shale in Oklaho-
ma ranges from marginally mature (0.49% VRo) to post 
mature (6.36% VRo) (Table 2). Although the suggestion 
that early oil generation in Woodford Shale may begin 
at 0.35% Ro (Comer, 2005), the recognition that solid 
bitumen (having a lower reflectance than vitrinite) has 
been misidentified as vitrinite in the vitrinite-reflectance 
analyses in some Woodford samples most likely explains 
this low vitrinite-reflectance value. A higher value near 
0.5% VRo (as used by Tissot and Welte, 1984, p. 517, and 
Hunt, 1996, p. 334) may better represent the onset of hy-
drocarbon generation in the Woodford Shale. Peters and 
Cassa (1994) use 0.6% VRo as the onset of commercial 
oil generation. Jarvie (2012b, p. 91) indicated “…thermal 
maturity values from about 0.60 to 1.40% Ro are the most 
likely values significant for petroleum liquid generation. 
Regardless of thermal maturity, there must be sufficient 
oil saturation to allow the possibility of commercial pro-
duction of oil.” Therefore, 0.5% VRo may be the best 
estimate for the onset of oil generation in the Woodford 
Shale, while 0.6% VRo should be considered the lower 
limit of commercial volumes of oil expulsion following 
oil saturation.

Hydrous pyrolysis kinetics for the Woodford Shale in-
dicate the onset to completion of oil generation correlates 
to a range of about 0.6 to 1.2% VRo (Higley, 2014, p. 
26; Lewan and Pawlewicz, 2017). Formation of light al-
kanes (C1 – C5) during hydrous pyrolysis experiments 
of Woodford Shale samples collected from exposures on 
the south flank of the Arbuckle Uplift along Interstate-35 
confirm the co-generation of natural gas from Woodford 
kerogen during the main stage of oil generation (Lewan, 
1997). Total C1 to C5 gas concentrations of 28, 78, and 
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146 mmol/400 g of rock were recovered from sealed ves-
sels after 72 hours of heating at 300, 330, and 350oC, 
respectively (Lewan, 1997). Even though thermogenic 
gas is generated concurrently with oil generation, kinetics 
modeling indicates that in the Woodford Shale additional 
thermogenic gas generation results from the cracking of 
oil to gas between 1.2 to 1.7% VRo (Higley, 2014, p. 
26-28). For the Woodford Shale in the Anadarko Basin, 
Higley (2013, p. 81) presented models to show that “Oil 
generation began at burial depths of about 6,000 to 6,500 
ft (1,800 to 2,000 m). Modeled onset of Woodford Shale 
oil generation was about 330 million years ago (Ma); 
peak oil generation was from 300 to 220 Ma.” Although 
Dembicki (2014) concluded that “sufficient hydrocarbon 
saturation to allow expulsion is usually not reached until 
0.7-0.9% Ro”, Comer and Hinch (1987, p. 857) suggest-
ed that expulsion may begin earlier in very organic-rich 
oil-prone source rocks like the Woodford Shale because 
they yield large enough volumes of oil in the earliest 
stages of oil generation to reach effective oil saturation. 
Anderson (2014) recom-
mended 0.9-1.2% VRo 
as the maximum liquids 
recovery zone. Dembicki 
(2014) favored a narrow 
range of 1.2-1.5% VRo 
(typically recognized as 
the condensate window) 
for a liquids-rich play. 
Jarvie (2017, p. 343) 
concluded that “The op-
timum goal for highly 
economic oil produc-
tion is in the volatile oil 
window” (~0.95-1.15% 
Ro). These studies clear-
ly indicate that thermal 
maturities well into the oil window are the optimum for 
a liquids-rich play, but they do not preclude the possibil-
ity that highly organic-rich intervals with lower thermal 
maturities may result locally in an economically viable 
liquids-rich play because such intervals could generate a 
large enough volume of hydrocarbons to saturate the rock 
at maturities closer to the beginning of the oil window.

Thermal maturity limits for oil and thermogenic meth-
ane generation, preservation, and destruction that have 
been published in the literature are summarized below. 
The limits highlighted below have been applied to the 
Woodford Shale data in this report (Figure 25). Lewan 

and Pawlewicz (2017) suggested that 1.5% VRo is the 
lower limit for significant shale-gas accumulations 
sourced by gas generated from oil cracking. Using data 
from the Barnett Shale, Jarvie and others (2005) assigned 
the following vitrinite-reflectance limits for core sam-
ples: immature (< 0.55% VRo), oil window (0.55–1.15% 
VRo; peak oil generation at 0.90% VRo), condensate–
wet-gas window (1.15–1.40% VRo), and dry-gas window 
(> 1.40% VRo). Approximately 3% VRo is considered the 
upper limit of thermogenic methane generation (Taylor 
and others, 1998, pp. 128 and 504; Lewan, 2002; Lewan 
and Kotarba, 2014). Lewan and Pawlewicz (2017) de-
termined that 3.3-3.9% VRo is the end of thermogenic 
gas generation. Approximately 5% VRo is considered 
the upper limit of thermogenic methane preservation 
(Houseknecht and Spötl, 1993; Lewan and Kotarba, 
2014). The methane preservation limit may be related 
more to reservoir conditions than to methane destruction. 
Hunt (1996, p. 425) indicated that methane is stable at 
temperatures up to 550°C.

Figure 26a shows the thermal maturity-depth profile 
for all of the vitrinite-reflectance data in Table 2. In gen-
eral, thermal maturity increases with increasing present 
depth of burial (not modeled to maximum burial depth), 
but the scatter is large. Woodford Shale well cuttings with 
the highest vitrinite reflectance measured in the Anadarko 
Basin (4.89% VRo; OPL 245) at 22,526 ft (6,866 m) deep 
(GHK 1-18 Dugger well; Cardott, 1989) is deeper than 
the Woodford Shale well cuttings with the highest vit-
rinite reflectance measured in the Arkoma Basin (6.36% 
VRo; OPL 960) at 17,854 ft (5,442 m) deep (Amoco 
Production Company 1 Devils Backbone well; Cardott, 

Hydrocarbon Assessment

for Woodford Shale

Vitrinite Reflectance (% VR )o

Early oil generation zone 0.40-0.60%

Commercial oil window 0.60-1.15% (peak oil at 0.90%)

Condensate—wet-gas window 1.15-1.40%

Dry-gas window >1.40%

Thermogenic methane
generation limit

3.9%

Figure 25. Hydrocarbon generation assessment for the Woodford Shale.
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2012a). Figure 26b shows the thermal maturity profile 
for the Anadarko Basin and Anadarko Shelf with a nar-
row range of values, while Figure 26c shows the thermal 
maturity profile for the Arkoma Basin with a wider range 
in values. The thermal maturity of the Woodford Shale in 
the Anadarko Basin increases with increasing depth (Car-
dott, 1989; Higley, 2014), while thermal maturity of the 
Woodford Shale in the Arkoma Basin cuts across struc-
ture contours (Figure 27) (Cardott, 2012a) indicating that 
thermal maturity in the Arkoma Basin is controlled more 
by previous depth of burial instead of present depth of 
burial (Cardott, 2013b). The thermal maturity profiles 
shown in Figure 26d and Figure 26e follow a narrow 
range for the Ardmore and Marietta Basins, whereas 
vitrinite-reflectance values for the Cherokee Platform 
shown in Figure 26f are widely scattered with no obvious 
depth trend. The highest thermal maturities (>1.0% VRo) 
on the Cherokee Platform are in Osage County, Oklaho-
ma (associated with the thermal anomaly) and Okfuskee 
and Hughes Counties on the edge of the Arkoma Basin.

Woodford Shale vitrinite isoreflectance contours pre-
sented in this report should be used as a qualitative ther-
mal maturity indicator (e.g., start, middle, end of oil win-
dow; condensate window; dry gas window) and not as a 
“drill here” indicator because of the following factors:

1.  Vitrinite reflectance of a single sample is an average 
— the mean of a histogram — representing many 
individual measurements that have a range of values.

2.  Although the wide distribution of Woodford Shale 
well locations is adequate to estimate regional hy-
drocarbon source rock potential, closer spaced sam-
pling is required for the accurate assessment of the 
hydrocarbon production potential for a specific play.

3.  The middle and upper members of the Woodford 
Shale contain predominantly marine organic matter 
and very little vitrinite, making the statistical validity 
of the reflectance measurements more problematic. 
In contrast, the lower member typically has a signifi-
cantly lower TOC content and contains the most and 
largest (>15 µm) vitrinite/petrified wood.

4.  The vitrinite-reflectance values of a few samples in 
a well is extrapolated to the entire thickness of the 
formation even though the Woodford Shale may be 
up to 700+ ft (200+ m) thick (Table 2).

In summary, the thermal maturity of the Woodford 
Shale spans the oil, condensate, and dry-gas windows 
with a range of 0.49-6.36% VRo. Significant oil expul-
sion commences by 0.6% VRo. The maximum recovery 
of oil and condensate is achieved between 0.9-1.4% VRo, 
while thermogenic methane recovery occurs from the oil 
window through dry-gas window (Figure 25).

WOODFORD SHALE AS RESERVOIR

Shale Resource Systems

Petroleum systems include all of the essential aspects 
of petroleum geology that link oil and gas in reservoirs 
to their hydrocarbon source rocks (generation, migration, 
and accumulation) (Magoon, 1988, 1992; Magoon and 
Dow, 1994). Shale resource systems (i.e., shale gas and 
tight oil) for natural gas (mostly methane), condensate 
(mostly propane, butane, pentane, hexane), and oil (most-
ly higher molecular weight hydrocarbons) are self-con-
tained, continuous systems that encompass hydrocarbon 
source, migration pathway, reservoir, and seal (USGS, 
1995; Schmoker, 1999, 2002; Curtis, 2002; Hill and oth-
ers, 2007; Pollastro, 2007; Cardott, 2006, 2017; Breyer, 
2012; Jarvie, 2012a, b; Hackley and Cardott, 2016). The 
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term “shale gas” refers to the thermogenic or microbial 
gas produced from organic carbon-rich shale/mudrock. 
Since the term “shale oil” is typically used for the yield 
generated by the retorting of oil shale (i.e., immature 
oil-prone source rock), the term “tight oil” is used for 
oil produced from oil-bearing (thermally mature) shale 
(Boak, 2014; Boak and Kleinberg, 2020; Peters and oth-
ers, 2016).

Beginning in 1981, followed by commercial success 
in 1999, Mitchell Energy Corporation with the help of 
research by the Gas Research Institute (Gas Technology 
Institute) and advances in drilling and completion tech-
nology (e.g., horizontal/directional drilling, multi-stage 
hydraulic fracture stimulation, pumping more proppant, 
super-extended laterals; Soeder, 2018; Zoback and Kohli, 
2019) developed the Mississippian-age Barnett Shale in 
the Fort Worth Basin as the first commercial shale-gas 
reservoir in the world (Curtis, 2002; Montgomery and 
others, 2005; Bowker, 2007; Martineau, 2007; Steward, 
2007; Stark and Smith, 2017). Other shale-gas plays were 

developed in the U.S. soon after the success of the Bar-
nett Shale (Figure 28) (EIA, 2011a, 2016). As profoundly 
stated by Curtis (2002, p. 1937), “shale gas may represent 
one of the last, large onshore natural gas sources of the 
lower 48 states”. In 2004 the Oklahoma Geological Sur-
vey hosted the “Unconventional Energy Resources in the 
Southern Midcontinent” symposium which focused on 
gas shales in Oklahoma (Cardott, 2005).

Successful shale-gas and tight-oil production is af-
fected by both geological factors and well-completion 
techniques. Early on, it was determined that mechanical 
properties (brittle vs. ductile) are as important as hydro-
carbon source potential in establishing commercial pro-
duction (Cardott, 2006; Jarvie and others, 2007; Jarvie, 
2012a). Slatt and others (2018a) identified six essential 
attributes to be used as screening criteria for successful 
shale resource plays: these include 1) permeable and brit-
tle lithologies; 2) organic-rich source rock; 3) optimum 
thermal maturity for hydrocarbon generation; 4) adequate 
resource thickness; 5) oil/gas shows in wells or seeps 

Figure 28. Map of shale resource plays in the contiguous United States. From EIA (2016).
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in outcrops; and 6) lateral continuity that is regionally 
extensive. The following references provide further in-
formation on the characteristics of shale resource plays 
(Breyer, 2012; Jarvie, 2012a, 2012b, 2017; Zagorski and 
others, 2012, 2017; Slatt, 2013b; Bernard and Horsfield, 
2014; Gentzis and others, 2017; Juliao and others, 2017; 
Zou and others, 2017; Horsfield and others, 2018; Soeder, 
2018; Camp and others, 2019; Zoback and Kohli, 2019; 
Slatt, 2020). For a discussion on shale porosity and per-
meability, see Slatt and others (2018a).

Following the success of natural gas production from 
the Mississippian-age Barnett Shale in the Fort Worth 
Basin in Texas (Bowker, 2003, 2005, 2007; Hall, 2005; 
Steward, 2007; Hill and Jarvie, 2007), operators began to 
look at other gas shales (Cardott, 2008). The age-equiv-
alent Caney Shale was evaluated in 2004 in the Arkoma 
Basin in Oklahoma (Schad, 2004). When it was deter-
mined that the ductile, clay-rich Caney Shale in the Ar-
koma Basin did not fracture like the Barnett Shale (An-
drews, 2007), operators turned to the brittle, silica-rich 
Woodford Shale in the Arkoma Basin as a shale-gas res-
ervoir target in Oklahoma. Figure 29 shows the Oklaho-
ma gas-shale and tight-oil well completions history for 
the Caney Shale, Goddard/Springer shale, and Woodford 
Shale from 2004-2019. On an annual basis, the maxi-
mum number of 610 Woodford Shale well completions 
was achieved in 2014. The subsequent drop in the num-
ber of completions coincided with the global decline in 
oil prices.

The Woodford Shale in Oklahoma has been widely 
recognized as an important potential gas and oil reser-
voir (Comer, 2005; Haines, 2006; Kulkarni, 2011, 2012; 
Higley, 2011, 2013; Pickett, 2008; Torkelson, 2007; Wil-
liams, 2010). The development of the Woodford Shale 
as a gas and oil reservoir evolved from the foundational 
knowledge of its effectiveness as a regional hydrocarbon 
source rock and subsequent multidisciplinary studies of 
its mechanical properties. The combination of an excel-
lent thermally mature hydrocarbon source rock with in-
tervals of brittle lithology make the Woodford Shale an 
excellent unconventional oil and gas reservoir (Comer, 
2005; Kvale and Bynum, 2014). The Woodford Shale is 
included in several lists of important shale-gas and tight-
oil reservoirs in the USA (Cardott, 2008; Kuuskraa, 2011; 
Jarvie, 2012a; Hackley and Cardott, 2016; Gentzis and 
others, 2017; Juliao and others, 2017; Stark and Smith, 
2017; Zou and others, 2017).

Houseknecht and others (2010) included the Woodford 
Shale Gas Assessment Unit (total undiscovered resourc-

es for F95 to F5 fractiles of 6,065-17,036 billion cubic 
feet of gas [BCFG; mean of 10,678 BCFG] and 34-356 
million barrels of natural gas liquids [MMBNGL; mean 
of 142 MMBNGL]) in a petroleum assessment project 
of the Arkoma Basin. Higley and others (2011, 2014) in-
cluded the Woodford Composite Total Petroleum System 
(total undiscovered resources for Woodford Shale Oil As-
sessment Unit for F95 to F5 fractiles of 175-730 million 
barrels of oil [MMBO; mean of 393 MMBO], 795-3,851 
BCFG [mean of 1,963 BCFG], and 22-121 MMBNGL 
[mean of 50 MMBNGL]; total undiscovered resources 
for Woodford Shale Gas Assessment Unit for F95 to F5 
fractiles of 8,806-25,998 BCFG [mean of 15,973 BCFG] 
and 94-336 MMBNGL [mean of 192 MMBNGL]) in an 
oil and gas assessment project of the Anadarko Basin. 
Drake and Hatch (2021) included the Woodford Shale Oil 
Assessment Unit (total undiscovered resources for F95 
to F5 fractiles of 195-924 million barrels of oil [MMBO; 
mean of 460 MMBO] and 246-1,345 BCFG [mean of 644 
BCFG]) and Woodford Biogenic Gas Assessment Unit 
(total undiscovered resources for F95 to F5 fractiles of 
90-993 BCFG [mean of 416 BCFG]) in an oil and gas 
assessment project of the Cherokee Platform Province.

As of year-end 2019, EIA (2021) reported proved re-
serves of 524 million barrels of crude oil and 20.9 trillion 
cubic feet of natural gas for the Anadarko Basin/southern 
Oklahoma Woodford Shale play.

Woodford Reservoir Characterization

Comer (1991) highlighted petrologic and geochemi-
cal data necessary for predicting potential locations and 
lithologies of commercial petroleum reservoirs within 
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the Woodford Shale in the Permian Basin. Hester and 
Schmoker (1993) anticipated that the Woodford Shale 
would be an economically significant reservoir rock in 
Oklahoma. Some of the key geologic and technical fac-
tors that are evaluated for shale-gas and tight-oil plays 
are: organic matter type, quantity, and thermal maturity; 
mineralogy; ability to be fractured; rock thickness; depth; 
porosity; permeability; and reservoir pressure (Zagorski 
and others, 2012). Many of these factors for the Wood-
ford Shale have been discussed in previous sections of 
this report. Slatt and others (2018a) suggested 75 ft (23 
m) as a minimum thickness for productive wells with 
commercial initial potential (IP) rates. In addition to 
being a hydrocarbon source rock, a shale-gas or tight-
oil reservoir needs to have sufficient permeability for 
conventional reservoir completion (e.g., Bakken Shale; 
Sonnenberg and others, 2017) or brittle lithology (e.g., 
>30% quartz or carbonate) responsive to artificial stim-
ulation (Jarvie, 2012b; Horsfield and others, 2018). Res-
ervoir pressure is an important aspect for hydrocarbon 
production. Zagorski and others (2017, p. 71) indicated 
that “A key parameter influencing the Marcellus play is 
overpressure. A near-normal or overpressure gradient is 
essential for effective large-scale water fracs.” Al-Shaieb 
and others (1992, 2001) described the Woodford Shale as 
the basal seal of an Anadarko-Basin-wide overpressured 
compartment that they referred to as the megacompart-
ment complex.

Intervals in the Woodford Shale having a biogenic 
silica-rich, brittle lithology are critical for hosting and 
maintaining natural and induced fractures. Biogenic 
chert intervals occur more frequently higher in the sec-
tion and increase in abundance and thickness eastward 
from the southeastern Anadarko Basin into the Ouachita 
Mountains Uplift. Biogenic chert intervals possess good 
mechanical properties for reservoir development while 
intervals composed mostly of detrital clay and silt pos-
sess poor mechanical properties that inhibit reservoir 
development (Caldwell, 2011) (see section titled Chert 
above). Natural fractures are more abundant in the brittle 
chert-rich lithology and the natural fractures enhance the 
permeability developed during hydraulic fracturing in the 
Woodford Shale (Ataman, 2008; Badra, 2011; Bramlett, 
1981; Slatt and Abousleiman, 2011; Molinares Blanco 
and others, 2017b). Portas Arroyal (2009) correlated po-
tential fracture zones identified from seismic attributes 
with fracture zones identified on the outcrop. Natural 
fractures that are prevalent in siliceous and cherty facies 
in the Woodford may be filled with brittle authigenic 

minerals that promote additional brittle behavior (Rob-
erts and Elmore, 2018). However, Woodford lithology is 
variable vertically and regionally. Mineral and organic 
variability has resulted in a complex reservoir that re-
quires extensive study to develop the well-completion 
plan (Kvale and Bynum, 2014). For the purpose of well 
stimulation, the Woodford can be classified into four 
rock types: siliceous mudrock, clayey siliceous mudrock, 
clayey mudrock, and organic-poor clayey mudrock. Sili-
ceous mudrock facies have stimulation success while the 
other facies result in failed fracturing treatments (Cald-
well, 2014; Scaggs and others, 2017).

Slatt and Abousleiman (2011), Slatt (2013a) and Slatt 
and others (2018a) utilized high-resolution sequence stra-
tigraphy of the Woodford Shale to identify brittle-ductile 
couplets (alternating chert/very siliceous shale and more 
clay-organic shale) to explain successful well comple-
tions. Slatt (2013a, 2015) indicated that these brittle-duc-
tile couplets, with the brittle zone above a high TOC in-
terval, represent the preferred target zones for successful 
completions. Fractures in chert beds observed in outcrop 
are typically oriented perpendicular to bedding (Fishman 
and others, 2013) and do not extend through adjacent 
clay-rich beds (Paxton and Cardott, 2008; Fishman and 
others, 2013; Slatt, 2013b; Slatt and others, 2018a, b). 
Slatt and others (2012) identified higher fracture densi-
ty in upper Woodford quartzose lithofacies based on the 
Fullbore Formation MicroImager (FMITM) log and core 
analysis. A brittle formation may be recognized either 
by a high biogenic quartz and/or carbonate content or a 
combination of a high Young’s modulus and low Pois-
son’s ratio (Slatt, 2013a; Slatt and others, 2014; Tran and 
others, 2014). Commercial shale resource plays contain 
<40% clay minerals (Anderson, 2014).

Slatt and others (2018a) discussed the methods used 
to measure nanoporosity and permeability in shales. Fo-
cused and broad ion-beam milling field emission scan-
ning electron microscopy is the preferred method to ex-
amine the size, shape, distribution, and connectivity of 
nanodarcy- and microdarcy-scale pores in shales. Sev-
eral pore classifications have been proposed for shales 
(Cardott and Curtis, 2018). The most basic pore classi-
fications include interparticle pores, intramineral pores, 
intraorganic pores, and fracture pores (Slatt and O’Brien, 
2011; Loucks and others, 2012). Both organic and in-
organic pore types can function as hydrocarbon storage 
sites and permeability pathways (Cardott and others, 
2015; Slatt and others, 2018a). Post-oil solid bitumen 
forms a network in the thermally mature shale matrix 
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and hosts intraorganic pores that provide a potential pri-
mary migration pathway for hydrocarbons (Cardott and 
others, 2015). Nanopores in post-oil solid bitumen are 
considered a dominant source of porosity in shale res-
ervoirs (Curtis and others, 2012; İnan and others, 2018; 
Dong and Harris, 2020). Zagorski and others (2017) rec-
ognized intraorganic porosity as the key pore type in the 
Marcellus Shale.

Comer and Hinch (1987) documented 5 styles of solid 
bitumen accumulation completely enclosed within fine-
grained, organic-rich intervals of the Woodford Shale and 
age-equivalent strata, including accumulations in frac-
tures, stylolites, burrows, nodules, and sandstone lenses. 
Small-scale accumulations of solid bitumen within ma-
ture source rocks are evidence of effective porosity and 
permeability to oil. Both normal pore networks and en-
hanced fracture networks were judged to be the principal 
conduits for oil movement through the Woodford Shale 
(Comer and Hinch, 1987). Subsequent work by Slatt and 
O’Brien (2011) identified pores at both micrometer and 
nanometer scales in Woodford Shale, including pores 
up to tens of micrometers in diameter in clay floccules 
that may be interconnected, nanometer sized pores in 
organic particles that appear to be more isolated, pores 
between particles incorporated in sand-sized fecal pel-
lets, pores in fossil remains (open chambers and porous 
walls), pores between microcrystals in grains of second-
ary origin, and microchannels and microfractures that of-
ten cut across bedding. While all of these pores provide 
space for gas and oil storage, the pore types most likely 
to create permeability are those developed in floccules, 
organic matter, microchannels, and microfractures (Slatt 
and O’Brien, 2011). Comer and Hinch (1987) reported 
a mean porosity of 3% for Woodford Shale samples and 
Gupta and others (2018) reported mean porosity values 
of 7.7% for high porosity and high TOC samples, 6.4% 
for intermediate porosity and TOC samples, and 3.1% for 
low porosity and relatively low TOC but high carbonate 
content. In a study of low thermal maturity Woodford 
Shale outcrops in the Arbuckle Uplift, Fishman and oth-
ers (2013) indicated that cherts had porosities of 0.59-
4.90% and permeabilities of 0.003-0.274 µD while mud-
stones had porosities of 1.97-6.31% and permeabilities 
of 0.011-0.089 µD.

Slatt and others (2018a, p. 307) stated “The orientation 
of a horizontal or vertical well relative to the orienta-
tion of bedding will affect the ‘breakability’ of a shale.” 
Based on Woodford Shale outcrop studies of soft beds 
(laminated, fissile hydrocarbon source rocks) and hard 

beds (nonfissile, blocky zones) that combine reservoir 
quality (source rock capable of storing hydrocarbons) 
and completion quality (fracture development and effi-
cient proppant placement), Galvis and others (2018) and 
Becerra and others (2018) proposed that the best hori-
zontal drilling and completion target intervals correspond 
to high-frequency interbedding with 50/50 soft-to-hard 
ratios. Fishman and others (2013) concluded that cherts 
in the Woodford Shale may be important intervals of gas 
generation and storage. Based on three rock types iden-
tified in Woodford cores from seven wells, Gupta and 
others (2018) determined that rock type 1 (low density, 
high gamma ray, high quartz) concentrated in the upper 
part of the middle Woodford was the best reservoir rock. 
Other studies concur that the best horizontal landing zone 
in the Woodford Shale is the upper part of the middle 
Woodford Shale (i.e., brittle zone above a high TOC in-
terval, above the maximum flooding surface (mfs); see 
Figure 6, GRP 7) (Slatt and Rodriguez, 2012; Caldwell 
and Johnson, 2013; Molinares Blanco and others, 2017a; 
Galvis and others, 2018; Brito, 2019). Zagorski and oth-
ers (2017) found that key pay intervals in the Marcellus 
Shale are also associated with maximum flooding sur-
faces. Of six zones in the Woodford Shale (zone A at the 
top to zone F at the bottom), Peza and others (2014) con-
cluded that zones C and D in the middle Woodford had 
the best reservoir quality (TOC, porosity, permeability). 
Based on an outcrop study of fracture intensity and bed 
thickness of brittle and ductile beds, Ghosh and others 
(2018) concluded that part of the upper and most of the 
middle Woodford members with high fracture densities 
and organic-rich intervals may be suitable horizontal well 
landing targets. Laughrey and others (2017) concluded 
that the middle Woodford member had the most favor-
able reservoir parameters and economic production po-
tential for a well in Garvin Co. Torres-Parada and others 
(2018) concluded that the Woodford Shale brittle-ductile 
couplets between the upper portion of the middle member 
and the lower portion of the upper member had the best 
reservoir properties (i.e., porosity, permeability, thick-
ness). Scaggs and others (2017, p. 54) stated “Optimally, 
the goal is to target the Woodford ‘B’ interval, which is 
characterized by high resistivity and neutron and densi-
ty porosity coming together or crossing over, and lower 
total gamma ray (GR) than other Woodford intervals.”

Even though the Woodford Shale in northeast Oklaho-
ma is in the oil window, unconventional Woodford wells 
produce no oil and minor amounts of gas. Poor results are 
attributed to the change in Woodford Shale mineralogy in 
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northeastern Oklahoma from biogenic quartz in the south 
and southwest (Figure 5d-f, h) to detrital quartz and clay 
proximal to the Ozark Uplift (Figure 5a-b). Dong and 
others (2017) indicated that siliceous intervals of auth-
igenic (biogenic) quartz correlated with brittleness and 
improved fracture development and integrity, whereas 
laminated mudstones with detrital quartz grains support-
ed in a clay matrix were relatively too ductile to support 
and maintain open fracture networks.

The methane molecule is 3.8 angstroms in size. Meth-
ane is more mobile than the larger oil molecules. Jar-
vie (2012b, p. 91) stated that “Although an organic-rich 
source rock in the oil window with good oil saturation is 
the most likely place to have oil, it is also the most difficult 
to produce, unless it has open fractures or an organic-lean 
facies closely associated with it.” Conventional oil pro-
duction from the Woodford Shale occurs in intervals with 
open natural fractures (Comer and Hinch, 1987). How-
ever, some researchers of unconventional resource shale 
plays question the importance of natural fractures. Bowk-
er (2007) and Gale and others (2007) indicated that open 
natural fractures could be a detriment to gas production 
from the Barnett Shale if gas migrated out, brought water 
into the shale, or prevented new fractures from forming 
during hydraulic fracture treatments. Most natural frac-
tures in the Barnett Shale had been sealed with calcite 
during burial diagenesis and reopened during hydraulic 
stimulation (Bowker, 2007; Gale and others, 2007). Con-
cerning fracturing and faulting issues for the Marcellus 
Shale, Zagorski and others (2012, p. 196) stated “When 
and where do these features enhance production or act 
as detriments influencing completion effectiveness and 
borehole stability? Should fractured areas be targeted or 
avoided? Where is the distinction made?” Zagorski and 
others (2017, p. 76) concluded that “in highly fractured 
regions, it appears the higher degree of natural fractur-
ing significantly negatively impacts well performance.” 
For Woodford Shale, zones that produce oil from natural 
fractures in conventional wells are the same brittle bio-
genic chert lithologies as zones that produce unconven-
tional oil because they are the most mechanically capable 
of supporting open fractures when stimulated (Comer, 
2005; Kvale and Bynum, 2014; Becerra and others, 2018; 
Galvis and others, 2018; Ghosh and others, 2018). From 
this observation, Gupta and others (2013) correlated three 
elastic petrotype groups (containing high, intermediate, 
and low TOC) in the Woodford Shale, determined by 
core measurements and well logs, to seismic data in or-
der to estimate brittle versus ductile rock properties and 

identify potential areas with natural fractures and high 
“fracability”.

Gas and Oil Production from the Woodford Shale

Gas Production: The first recorded Woodford Shale 
gas well in Oklahoma is the Magnolia Petroleum Com-
pany 2 L.M. Bumpass well (API 35-019-76014; Section 
33, Township 1 South, Range 3 West) in Carter County, 
Oklahoma, completed in June 1926. Most early Wood-
ford Shale well completions are commingled with adja-
cent formations. A total of 22 Woodford Shale-only gas 
wells, most as old well workovers or recompletions, were 
completed in Oklahoma from 1926 to 1995. The earliest 
Woodford Shale oil well in Oklahoma is the Carter Oil 
Company 1 P. Phillips well (API 35-133-05194; Section 
18, Township 6 North, Range 8 East) in Seminole Coun-
ty, Oklahoma, completed in March 1928. Andrews (2009, 
figure 9) included a map showing oil and gas Woodford 
Shale well completions in Oklahoma from 1934 to 2009.

In Oklahoma, gas production is reported for individual 
wells to the Oklahoma Corporation Commission while 
oil/condensate production is reported for each lease. 
Therefore, cumulative gas production data by well are 
accurate but cumulative oil/condensate production data 
are only accurate from single-well leases. Cumulative 
oil/condensate production from multiple-well leases is 
reported as the total from all producing wells and pro-
duction from individual wells on a given lease cannot be 
deciphered from this total. For example, oil production is 
reported for a lease located in Wagoner County, Oklaho-
ma, that includes two Woodford Shale well completions 
(1. Resource Development Technology 18-11R Dunkin, 
API 35-145-22949, Section 18-Township 17 North-
Range 18 East; 2. Resource Development Technology 
18-5H Clark, API 35-145-22967, Section 18-Township 
17 North-Range 18 East) as well as wells completed in 
the Pennsylvanian-age Dutcher sand, but the Woodford 
Shale wells only produced gas (verified by the operator).

The modern Woodford Shale “gas-shale” play started 
in 2004 in the western part of the Arkoma Basin in an 
area where the Woodford is >100 ft (30 m) thick and 
in the dry gas window (>1.4% VRo). At the time it was 
speculated that parts of the oil window (“black oil”; 
<1% VRo) should be avoided because liquid hydrocar-
bons might plug the already low permeability and block 
the flow of methane in shale reservoirs (Cardott, 2005, 
2006; Hill and others, 2007; Jarvie and others, 2007), 
and that the best thermal maturity for higher gas flow was 
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>1.4% VRo. As operators drilled more and more wells 
into the oil window, it became apparent that shales could 
also produce oil and condensate (Boak and Kleinberg, 
2016, 2020).

Woodford Shale play maps for the Arkoma, Ardmore, 
and Anadarko Basins are available at EIA (2011b). An 
Oklahoma shale-gas and tight-oil completions data-
base (Appendix 2), based on the Oklahoma Corporation 
Commission 1002A completions report, contains 5,866 
records of shale-gas and tight-oil completions. These 
are listed from oldest to youngest with geologic age 
and numbers of completions in parentheses, and include 
Sylvan Shale or Sylvan/Woodford (Late Ordovician; 22 
completions), Arkansas Novaculite (Devonian-Missis-
sippian; 3 completions), Woodford Shale (Late Devo-
nian-Early Mississippian; 5,533 completions), Caney 
Shale (Mississippian; 115 completions), Caney Shale/
Woodford Shale (28 completions), Barnett Shale (Mis-
sissippian; 2 completions), Goddard Formation (lower 
Springer shale; Late Mississippian; 160 completions), 
Atoka Group shale (Early Pennsylvanian; 1 completion), 
and Middle Pennsylvanian-age shales (Excello [1 com-
pletion]; Nuyaka/Mulky/Oakley [1 completion]). Figure 
30 shows all shale-well completions (1926-2020) from 
the database (completion dates from June 22, 1926 to 
June 2, 2020). Most (94%) of the well completions are 
in the Woodford Shale.

Figure 31 shows the distribution of Woodford Shale 
gas and tight-oil wells by year from 2004-2020. Wood-
ford Shale wells drilled in 2020 were in the Anadarko, 
Ardmore, Arkoma, and Marietta Basins. Figure 32 shows 
5,505 Woodford Shale-only vertical and horizontal/direc-
tional wells completed in Oklahoma from 2004 to 2020. 
The wells plotted in Figure 31 and Figure 32 exclude 
Woodford Shale wells with commingled production from 
other formations. The earliest Woodford Shale wells 
drilled in the Arkoma Basin were vertical completions. 
Once the depth and thickness of the Woodford Shale 
was determined by vertical drilling, horizontal wells lat-
er became the preferred drilling method. Of the 5,505 
Woodford Shale well completions from 2004-2020, 93% 
(5,096 wells) are horizontal/directional wells and 7% 
(409 wells) are vertical wells. Of the 5,505 Woodford 
Shale well completions from 2004-2020, 32% (1,763 
wells) are classified as oil wells based on a gas-to-oil 
ratio <17,000:1.

Initial exploration intentionally targeting the Woodford 
Shale was a gas-shale play in the western Arkoma Basin. 
The first Woodford Shale gas-shale well (post 2003) in 

Oklahoma was the Newfield Exploration Mid-Continent 
Inc. 2-10 Lambert vertical well (API 35-121-23222, Sec-
tion 10, Township 5 North, Range 12 East) completed 
in August 2004 in Pittsburgh County, Oklahoma, in the 
Arkoma Basin. The reported initial potential gas rate was 
539 thousand cubic feet of gas per day (Mcfd) (cumu-
lative gas production of 465 million cubic feet of gas 
(MMcf) from August 2004 to June 2020). The early gas 
flow rate decline from the initial potential rate in Wood-
ford Shale gas-shale resource wells is partly related to 
the placement and number of proppant stages in brittle 
vs. ductile beds as discussed by Slatt and others (2018a).

The shallowest original (non-workover) vertical Wood-
ford Shale well was the 51 Gas LLC 1 Frailey well (API 
35-097-21712, Section 36, Township 20 North, Range 
18 East) in Mayes County, Oklahoma, completed in May 
2014 at a depth of 370 ft (113 m). The reported initial po-
tential gas rate was 30 Mcfd. The Frailey well produced 
a cumulative gas total of 71,885 Mcf from November 
2015 to November 2020. The deepest original vertical 
Woodford Shale well in the Arkoma Basin was the Sedna 
Energy 1-22 S.R. Phipps well (API 35-121-23640, Sec-
tion 22, Township 3 North, Range 13 East) in Pittsburg 
County, Oklahoma, completed in October 2006 at a depth 
of 12,484 ft (3,805 m; initial potential gas rate of 10 Mcfd 
with no reported production).

The first horizontal Woodford Shale well in Oklahoma 
was the Newfield Exploration Mid-Continent Inc. 3H-9 
Blevins well (API 35-121-23311, Section 9, Township 5 
North, Range 12 East) in Pittsburg County, Oklahoma, 
in the Arkoma Basin completed in April 2005 with a true 
vertical depth of 7,265 ft (2,214 m). The well initially pro-
duced 462 Mcfd from an 834 ft (254 m) lateral and pro-
duced 910 MMcf from March 2005 until June 2020. The 
first Woodford Shale extended horizontal lateral (cover-
ing two or more sections) >10,000 ft (3,050 m) was the 
Newfield Exploration Mid-Continent Inc. 1H-17E Keen 
well (API 35-063-24256, Section 29, Township 5 North, 
Range 11 East) in Hughes County, Oklahoma, complet-
ed in December 2009 with a lateral length of 10,105 ft 
(3,080 m). The horizontal Woodford Shale well with the 
highest initial potential gas rate in the Arkoma Basin was 
the Newfield Exploration Mid-Continent Inc. 1H-12XX 
Payden well (API 35-121-24762, Section 24, Township 
5 North, Range 13 East) in Pittsburg County, Oklahoma, 
completed in November 2015 at 17,863 Mcfd (cumula-
tive gas production of 9,372 MMcf from November 2015 
to June 2020). The horizontal Woodford Shale well in 
Oklahoma with the highest initial potential gas rate is the 
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Figure 30. Geologic provinces map (Figure 1) showing Oklahoma shale-gas and tight-oil well completions (1926–
2020) from data in Appendix 2.

Figure 31. Geologic provinces map showing 5,505 Woodford Shale-only gas and oil well completions (2004–2020) 
by year from data in Appendix 2. Year 2020 wells are the top layer and older well symbols are arranged from oldest 
(top) to youngest (bottom).
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Continental Resources Inc. 1-6-7XHW 
Simba well (API 35-011-23940, Section 
6, Township 14 North, Range 12 West) in 
Blaine County, Oklahoma, in the Anadar-
ko Basin completed in August 2018 with 
a true vertical depth of 13,371 ft (4,075 
m); the well initially produced 29,847 
Mcfd from a lateral of 9,818 ft (2,993 
m; cumulative gas production of 14,100 
MMcf from October 2018 to June 2020). 
True vertical depths of Arkoma Basin 
Woodford Shale wells range from 1,045 
ft (319 m) (vertical well; Little Bear 
Resources 1-15 Stuber Trust well, API 
35-005-20382, Section 15, Township 
3 South, Range 9 East, adjacent to the 
Arbuckle Uplift in Atoka County, Okla-
homa) to 13,810 ft (4,209 m) (horizontal 
well; Newfield Exploration 1H-19 Couch 
well, API 35-005-20430, Section 18, Township 2 North, 
Range 13 East; Atoka County).

Figure 33 shows initial potential gas rate vs. Woodford 
Shale true vertical depth (5,001 horizontal wells; 340 
vertical wells) for the entire state. Initial potential gas 
rates range from a trace to 29,847 Mcfd for well depths 
that range from 368 to 19,218 ft (112 to 5,858 m). The 

highest initial potential gas rates were from horizontal 
wells. Many horizontal Woodford Shale wells include a 
pre-perforated liner for wellbore stability.

Oil Production: The early analog for producing oil 
directly from organic carbon-rich shale was the Bakken 
Formation in the Williston Basin. Oil production from the 
Bakken Formation began in the 1950s and the first hori-
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Figure 32. Geologic provinces map showing 5,505 Woodford Shale-only gas and oil well completions (2004–2020) 
by well type from data in Appendix 2.
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in Appendix 2.
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zontal Bakken oil well was drilled in the late 1980s (Nor-
deng, 2010). The current Bakken tight-oil play developed 
in Montana beginning in 2003 (Stark and Smith, 2017; 
Sonnenberg and others, 2017). The decline in the price 
of natural gas beginning in 2008 redirected operators in 
gas-shale plays to look for liquid hydrocarbons (oil and 
condensate; Kulkarni, 2012; Pickett, 2013; Pish and Kil-
lian, 2012; Stark and Smith, 2017). Hester and others 
(1990b) recognized the Woodford Shale as a potential 
“Bakken-type” horizontal target in the Anadarko Basin.

By 2007 the focus in the Woodford Shale play had 
shifted from gas production in the Arkoma Basin to more 
liquid-rich areas in the Anadarko Basin, Anadarko Shelf, 
Ardmore Basin, and Cherokee Platform of north and cen-
tral Oklahoma (Figure 31). Caldwell (2011) showed a 
thickening of the Woodford Shale to more than 250 ft (76 
m) thick along the eastern flank of the Anadarko Basin in 
western Canadian County, Oklahoma. The combination 
of thick shale hydrocarbon source rock in the condensate 
window at vertical depths less than 15,000 ft (4,600 m) 
led Devon Energy to develop the “Cana” play in west-
ern Canadian County, Oklahoma, beginning in 2007 with 
the 1-36H Hancock well (API 35-017-23972, Section 36, 
Township 13 North, Range 10 West; Haines, 2017). The 
Cana play expanded northwestward in 2009 into south-
ern Blaine and southeastern Dewey Counties where the 
Woodford Shale thins from greater than 200 ft (60 m) to 
less than 100 ft (30 m) thick (Plate 2).

Continental Resources developed the oil- and con-
densate-rich South-Central Oklahoma Oil Province 
(SCOOP) (Figure 12) including both the Woodford Shale 
and Springer/Goddard shale in Carter, Garvin, Grady, 
and Stephens Counties, Oklahoma, beginning in 2012 
(Redden, 2013; Cardott, 2017; Pickett, 2017, 2019). The 
SCOOP play includes the deepest horizontal Woodford 
Shale completion at a true vertical depth of 19,218 ft 
(5,858 m; Gulfport Midcon LLC 7R-12X13H Cleburne 
well, API 35-051-24227, Section 12, Township 4 North, 
Range 7 West, in Grady County, Oklahoma, completed 
in May 2018 with initial potential rates of 14,498 Mcfd 
and 2 barrels of condensate per day). The Continental Re-
sources Inc. 1-25-24-13XH Romanoff well (API 35-051-
24076, Section 25, Township 7 North, Range 5 West), in 
Grady County completed in April 2017, is the horizontal 
Woodford Shale well with the longest lateral length of 
14,921 ft (4,548 m) at a true vertical depth of 10,762 ft 
(3,280 m) (initial potential gas rate of 1,894 Mcfd [cumu-
lative gas production of 1.07 BCFG] and initial potential 
oil rate of 1,006 barrels of oil per day [bopd] [cumulative 

oil production of 524,870 barrels] through April 2020).
Newfield Exploration Mid-Continent Inc. developed 

the Sooner Trend (oil field) Anadarko (basin) Canadian 
Kingfisher (counties) (STACK) play (Figure 12) (in-
cluding parts of the Woodford Shale Cana play) in the 
Meramec Lime (correlated to lower Caney Shale and 
upper Sycamore Limestone; Figure 2), Osage Lime 
(correlated to Sycamore Limestone), and the Woodford 
Shale beginning in 2013 (Cullen, 2017; Hart Energy, 
2017; Pickett, 2014, 2017, 2019; Miller and others, 2019; 
Price and others, 2020). According to IHS Energy (2015, 
1/23/2015 news), “The Meramec in the area is approxi-
mately 275-475 ft [84-145 m] in thickness with 3-6% po-
rosity. The Woodford ranges from about 200 to 300 ft [60 
to 90 m] thick and has porosity of 3-7%.” The Meramec 
Lime immediately overlies the Osage/Sycamore/Wood-
ford formations and underlies or is partly equivalent to 
the Caney Shale (Redden, 2015; Miller and others, 2019).

The Merge play (Figure 12) developed by Jones Ener-
gy, Inc. includes the Woodford Shale and Meramec/Syc-
amore in Canadian, Grady, and McClain Counties and 
began in 2016 between the SCOOP and STACK regions 
(Cullen, 2017; Stoneburner, 2017; Toon, 2017; Presley 
and others, 2017; Slatt and others, 2018a; Milad and oth-
ers, 2020). Newfield Exploration developed the SCORE 
(Sycamore Caney Osage Resource Expansion) play in 
2017 to test the Sycamore and Caney in the SCOOP and 
Osage in the STACK (Hart Energy, 2017; Presley and 
others, 2017).

Condensate production often begins months after the 
well is drilled and completed. Cardott (2012a) used liq-
uid-hydrocarbon (including both oil and condensate) 
production data to differentiate between Woodford Shale 
wells that produce condensate and those that produce 
dry-gas. Production data was confirmed by the operator 
to be from a single well lease that was not commingled 
with another formation. Liquid hydrocarbon production 
during the first few months from higher thermal maturity 
(>1.4% VRo) wells was interpreted as oil-based drilling 
fluid flowback. Liquid hydrocarbon samples from these 
wells are not available to confirm that the early production 
is oil-based drilling fluid. Cardott (2012a) showed that a 
Woodford Shale well in the Arkoma Basin (St. Mary Land 
& Exploration Company 3-14 Marvin well, API 35-029-
20942, Section 14, Township 1 North, Range 10 East) 
with condensate production (verified by a condensate 
sample) had a vitrinite reflectance of 1.67% VRo based on 
a vitrinite-reflectance analysis of cuttings samples (OPL 
1373). This is the highest reported thermal maturity for a 
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Woodford Shale well that produced con-
densate. Jarvie and others (2007) report-
ed a vitrinite reflectance of 1.67% VRo 
for a Barnett Shale well (Mitchell En-
ergy Corporation 2 Sims) that had con-
densate production (Dan Jarvie, personal 
communication, 3/17/2021). However, 
condensate production from shales with 
thermal maturity greater than ~1.50% 
VRo is not consistent with Jarvie and oth-
ers (2005) hydrocarbon generation stag-
es nor with the hydrocarbon assessment 
guide presented in Figure 25. Condensate 
production from Woodford Shale wells 
in the western Arkoma Basin with ther-
mal maturities >1.40% VRo could be the 
result of migration from lower thermal 
maturity Woodford source rocks into higher thermal ma-
turity Woodford reservoirs following uplift. Therefore, 
Woodford Shale sections with VRo values >1.40% should 
be considered as potentially prospective for migrated hy-
drocarbons if they are in the appropriate geologic setting.

Figure 34 shows initial potential oil/condensate rate 
vs. Woodford Shale true vertical depth (3,081 horizontal 
wells; 69 vertical wells). Initial potential oil/condensate 
rates range from a trace to 2,505 barrels of oil per day 
(bopd). The well with the highest initial potential oil/
condensate rate of 2,505 bopd is Newfield Exploration 
5H-7X Williams (API 35-049-25040, Section 6, Town-
ship 2 North, Range 3 West, Garvin County, Oklahoma; 
cumulative oil production of 143,574 barrels of oil from 
August 2015 to May 2020). Depths of oil/condensate 
producing wells in Figure 34 range from 2,320 to 17,384 
ft (707 to 5,299 m). The highest initial potential oil/con-
densate rates were from horizontal wells. Three Newfield 
Exploration wells (3H-7X Williams, API 35-049-25051; 
1H-5XX Hays, API 35-049-25027; 5H-7X Williams, 
API 35-049-25040) with the highest initial potential oil 
rates of 2,060-2,505 bopd (44-47° API oil gravities) were 
in Township 2 North, Range 3 West in Garvin County, 
Oklahoma, from a true vertical depth of 12,139-12,572 ft 
(3,700-3,832 m) at an estimated thermal maturity of 1.1% 
VRo (see OPL 1478).

Cardott (2013a) developed maps of well locations cod-
ed for the initial potential values together with isoreflec-
tance contours in order to create Woodford Shale liquid 
hydrocarbon production maps in the context of thermal 
maturity. Using the same approach, Figure 35 shows ini-
tial potential oil and condensate production from Wood-

ford Shale wells. The boundary between condensate and 
natural gas (black circles) wells occurs at ~1.4-1.5% VRo. 
Some of the oil produced from Woodford wells having 
high IP oil rates >700 barrels (red stars) in north-central 
Oklahoma may come through fracture connections from 
adjacent formations. Woodford Shale wells at the peak of 
the oil window (~0.9% VRo) in Wagoner County, Okla-
homa, produce only natural gas (microbial and thermo-
genic). Assuming that the bulk organic matter is Type II 
kerogen (which has not been analytically confirmed), the 
lack of oil production from these mature source beds may 
be due to poor fracture development resulting from the 
absence of biogenic quartz as discussed above and the 
consequent low permeability inhibiting the flow of oil.

Reported oil gravities range from 21 to 79 API degrees. 
Based on Woodford Shale completion reports, 49 API 
degrees is the approximate boundary between oil and 
condensate. Figure 36 shows Woodford Shale API grav-
ities reported by the operator to delineate oil (<49°) and 
condensate (≥49°). Of 2,212 Woodford oil wells report-
ing API gravity, 1,171 had <49° oil gravity and 1,041 had 
≥49° oil gravity. For the most part, the thermal maturity 
limit of condensate is 1.4-1.5% VRo. With few exceptions 
only natural gas is produced at higher thermal maturities.

CONCLUSIONS

Woodford Shale is both a world-class hydrocarbon 
source rock and a commercial unconventional oil and gas 
reservoir. Based on conodont and microspore assemblag-
es, most of the Woodford Shale is Late Devonian (Fras-

Figure 34. Chart showing initial potential oil/condensate rate vs. Woodford 
Shale true vertical depth (3,081 horizontal wells; 69 vertical wells) from 
data in Appendix 2.
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Figure 35. Geologic provinces map showing 5,505 Woodford Shale-only initial potential oil/ condensate rates from 
data in Appendix 2. Note that “IP Oil” in the explanation includes both oil and condensate. Vitrinite isoreflectance 
contours are from Plate 3.
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Figure 36. Geologic provinces map showing 2,212 Woodford Shale-only wells that produce oil (<49° API gravity) and 
condensate (≥49° API gravity) from data in Appendix 2. Vitrinite isoreflectance contours are from Plate 3.
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nian-Famennian) in age and locally the uppermost part is 
Early Mississippian (Kinderhookian). The basal Misener 
sandstone is late Middle to Late Devonian in age (Give-
tian to Famennian) and the Sylamore sandstone, which 
is present in northeastern Oklahoma, is late Middle De-
vonian to late Kinderhookian. The characteristic Wood-
ford Shale lithology is fine-grained, organic carbon-rich 
mudrock. Composition varies from clayey to siliceous 
mudrock with lesser amounts of dolomitic mudrock. The 
basal sandstones (Misener and Sylamore members) are 
present in limited areas of northern and central Oklahoma 
and consist of well sorted and well-rounded quartz grains 
that were derived with little modification from nearby 
Middle Ordovician sandstone that was exposed along the 
Ozark Uplift during the Late Devonian. Except for these 
basal units, sand-sized detrital quartz grains are notably 
absent from Woodford Shale.

Woodford Shale is present throughout most of Okla-
homa and is locally absent in southwestern Oklahoma 
and parts of northern and central Oklahoma. The Wood-
ford Shale occurs at maximum subsea depths >16,000 ft 
(4,900 m) in the Ardmore Basin, >17,000 ft (5,000 m) 
in the Arkoma Basin, and >24,000 ft (7,300 m) in the 
Anadarko Basin. In general, the Woodford Shale thick-
ens from <25 ft (8 m) thick on the Anadarko Shelf and 
Cherokee Platform to >700 ft (200 m) thick in the south-
eastern Anadarko and Marietta basins, to >400 ft (120 
m) in the Ardmore Basin, and to >250 ft (76 m) in the 
Arkoma Basin.

The anomalously high radioactivity of Woodford Shale 
makes it easy to identify on gamma-ray logs. Most of the 
high gamma-ray signal is caused by unusually high con-
centrations of uranium. High concentrations of uranium 
indicate strongly reducing conditions and slow sedimen-
tation. Numerous authors have used the gamma-ray log, 
along with other log characteristics and lithologic vari-
ables, to divide the Woodford Shale into three informal 
members (Figures 3, 4, and 6). The lower member con-
tains plant megafossils and has intermediate radioactiv-
ity, density, and resistivity; the middle member contains 
the most resinous spores and the least pollen and exhibits 
the highest radioactivity and resistivity and the lowest 
density; and the upper member has the lowest TOC, ra-
dioactivity, and resistivity and the highest density. The 
top of the middle member is picked above the double 
gamma-ray peak (Figure 4), which is recognizable over 
much of Oklahoma. All three members are composed of 
thin beds and thin laminae of organic carbon-rich mud-
stones that are highly variable in composition.

The depositional environment has been interpreted by 
a significant number of researchers as follows: near-shore 
marine in the lower member (consistent with the occur-
rence of plant megafossils and the greater abundance of 
vitrinite derived from woody organic matter from the pro-
gymnosperm Archaeopteris), distal marine in the middle 
member (consistent with a low pollen index), and near-
shore marine in the upper member. However, the absence 
of tabular sand bodies (e.g., sand-dominated shoreface 
deposits) in the Woodford Shale prevent the identification 
of paleoshorelines based on traditional grain size trends, 
lithologic attributes, and terrestrial sediment source 
proxies, thus obscuring the generally applied meaning 
of terms such as near-shore or proximal and off-shore 
or distal for this stratigraphic interval. Transport of fine-
grained detritus by wind and storm-generated currents, 
processes interpreted to have dominated during Wood-
ford Shale sedimentation, would allow terrigenous com-
ponents to spread widely across the region far from their 
original source. In such a setting, intervals with greater 
proportions of fine-grained terrigenous detritus may not 
be nearer to a paleoshoreline than intervals with greater 
proportions of marine components, a situation further 
complicated by episodes of resuspension and resedimen-
tation that occurred frequently throughout the region.

Woodford Shale overlies a major regional unconformity 
and the age of the underlying strata, ranging mostly from 
Ordovician to late Early Devonian, is related to the extent 
of erosion into the pre-Woodford unconformity surface. 
Woodford Shale sequence stratigraphy includes a basal 
erosional sequence boundary, transgressive system tract 
in the lower and most of the middle Woodford Shale 
members, condensed section/maximum flooding surface 
at the highest gamma-ray reading (plotted full scale) in 
the upper middle member, and highstand system tract 
during major sea level regression in the upper middle 
and upper Woodford Shale members (Figure 6). This 
sequence stratigraphic interpretation for the Woodford 
Shale in Oklahoma is generally consistent with global sea 
level curves developed based on lithologic and high-res-
olution biochronological studies from many locations 
around the world (Figure 7). However, placement of the 
Frasnian/Famennian boundary in each of the three Wood-
ford Shale members by different researchers shows that 
regional correlations are poorly constrained. Intraforma-
tional Woodford correlations are mostly based on elec-
tric log characteristics, lithology, and chemostratigraphic 
proxies and are not based on the well documented, high 
resolution biochronological data that characterize the 
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global sequence because Woodford Shale is generally 
lacking in fossils.

A wide variety of minerals have been identified in 
Woodford Shale but quartz is typically the dominant 
mineral and mostly occurs together with highly variable 
amounts of illite. Quartz is present as silt- and clay-sized 
detrital grains and as chert of biologic origin. Biogenic 
chert forms during early diagenesis from the alteration 
of siliceous microorganisms (mostly Radiolaria), and in-
tervals with high concentrations of biogenic quartz are 
more brittle than intervals with detrital quartz supported 
in a ductile clay matrix. Naturally fractured, organic-rich 
Woodford Shale intervals composed of biogenic chert are 
the producing zone in conventional vertical wells located 
in Carter and Marshall Counties that have produced oil at 
low volumes for many decades. Recent unconventional 
exploration and applied research confirm that the brittle 
biogenic chert intervals are the optimum lithology for 
hosting and maintaining natural and induced fractures. 
The brittle chert-rich lithology also has a greater con-
centration of natural fractures which improves perme-
ability in the Woodford Shale, resulting in better well 
performance.

Woodford Shale sediments were deposited in an epei-
ric sea that extended along a west to southwest facing 
passive continental margin during the Late Devonian. 
Plate tectonic reconstructions for this time period place 
Oklahoma at a low southern latitude in the warm, arid 
southeasterly trade wind belt. Woodford Shale deposi-
tion began as the sea encroached over a major regional 
unconformity surface during a period of global warming 
and worldwide marine transgression. The widespread, 
blanket-like distribution of nearly uniform fine-grained 
sediment suggests a region of low relief, and the absence 
of deltas, submarine fans, coarse clastic wedges, large 
clinoforms, and sand-bearing turbidites indicate that ad-
jacent land areas were not drained by large rivers. The 
deepest parts of the Late Devonian epeiric sea in Oklaho-
ma coincided with the thickest accumulations of Wood-
ford sediments in the Anadarko, Ardmore, and Marietta 
Basins. In contrast the onlap of Woodford sediments and 
the increased amounts of terrigenous detritus proximal 
to the Nemaha and Ozark Uplifts indicate that both were 
topographically high in the Late Devonian. Although the 
region was mostly tectonically stable, contemporaneous 
epeirogenic activity is indicated by the abrupt change in 
thickness of the Woodford Shale across the Central Okla-
homa fault zone associated with the Nemaha Uplift and 
by the truncation of Woodford members and the shift of 

the locus of deposition from southwest to the northeast in 
late Woodford time across a northwest-southeast trending 
structure located in northwestern Oklahoma.

An arid paleoclimate is indicated by the presence of 
evaporite minerals (e.g., anhydrite, gypsum, length slow 
chalcedony, primary dolomite), biomarkers (gammac-
erane), and primary sedimentary structures (syneresis 
cracks). In addition, extensive drought conditions are 
suggested by a suite of biomarkers (certain polycyclic 
aromatic hydrocarbons) that have been attributed to pa-
leo-wildfires. The anomalously high organic carbon con-
centration characteristic of Woodford Shale is due to the 
combined effects of high biological productivity in the 
upper water column and widespread anaerobic and eux-
inic bottom conditions. High biological productivity was 
supported by nutrients derived from a persistent zone of 
coastal upwelling along the Late Devonian continental 
margin, which is recorded as age-equivalent biogenic 
chert of the Arkansas Novaculite. Upwelled nutrients 
were swept into the Woodford epeiric sea with the coun-
tercurrents that maintained water balance by replacing 
evaporative losses and the surface water driven out of the 
basin by Coriolis forces and Ekman circulation.

The absence of large rivers constrains interpretations of 
the processes for transport and deposition of Woodford 
sediments. Given the dry, low relief setting, transport of 
the fine-grained sediment that dominates the section was 
accomplished mostly by wind and by storm-generated 
currents. Deflation of the arid landscape, limited dis-
charge from intermittent streams, and storm-generated 
runoff would account for most of the terrestrial sediment 
contributed to the basin. These processes would also ac-
complish the transport of terrestrial nutrients into the ba-
sin and provide additional support for the persistent high 
biological productivity in the epeiric sea. Recent research 
on the Upper Devonian Three Forks Formation of the 
Williston Basin, which lay at the same southern paleo-
latitude as Woodford Shale, documents the significance 
of storms in the southern tropics during the Late Devo-
nian. The thin varve-like laminae commonly observed 
in Woodford Shale represent deposition of atmospher-
ic dust from fluctuating winds and episodic fallout of 
fine sediment entrained along isopycnals. The presence 
of abraded grains of penecontemporaneous dolomite in 
graded silty layers and in the basal sandstones (Misener 
and Sylamore members) indicates that resuspension and 
resedimentation were active processes throughout the re-
gion during the Late Devonian.

Hydrocarbon source rocks are evaluated based on or-
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ganic matter concentration, type, and thermal maturity. 
Total organic carbon (TOC) content in the Woodford 
Shale ranges from <1 to 30 wt.% and averages >6 wt.%. 
TOC is highly variable both vertically and laterally. Bulk 
organic matter in Woodford Shale is predominantly Type 
II kerogen (oil generative) of marine origin. Visual ker-
ogen analysis of low thermal maturity Woodford Shale 
indicates a composition of amorphous organic matter 
(45-95%), vitrinite, inertinite (fusinite and semifusini-
te), liptinite (e.g., Tasmanites telalginite), zooclast (e.g., 
acritarch), and solid bitumen macerals. The Woodford 
Shale is the oldest formation in Oklahoma known to con-
tain woody organic matter (i.e., vitrinite). Thermal ma-
turity of the Woodford Shale in Oklahoma ranges from 
marginally mature (0.49% VRo) to post mature (6.36% 
VRo). Depth of burial accounts for the thermal maturi-
ty throughout most of Oklahoma. Two thermal maturity 
anomalies in the subsurface on the Woodford isoreflec-
tance map are located in northern Oklahoma. The greater 
anomaly (>1.0% VRo) is in Osage County on the Cher-
okee Platform and the lesser anomaly (>0.8% VRo) is in 
Garfield County on the Anadarko Shelf. Both are sugges-
tive of igneous hot spots affecting post-Woodford alter-
ation. Small thermal anomalies in northeastern Oklaho-
ma have been attributed to the migration of hydrothermal 
fluids associated with the emplacement of Mississippi 
Valley-type lead-zinc deposits during the Late Paleozoic.

The combination of an excellent hydrocarbon source 
rock containing intervals of brittle lithology (biogenic 
chert) make the Woodford Shale an excellent unconven-
tional oil and gas reservoir. Overall, the Woodford Shale 
has a brittle, biogenic silica-rich lithology important for 
hosting and maintaining natural and induced fractures. 
Biogenic silica, which becomes more dominant higher 
in the section, is associated with brittle geomechanical 
properties while fine-grained detrital quartz, clay, and silt 
predominant in the lower Woodford are associated with 
ductile geomechanical properties. Brittle-ductile cou-
plets, with the brittle zone above a high TOC interval, 
represent the preferred target zones for successful com-
pletions. The best horizontal landing zone in the Wood-
ford Shale in recent plays (e.g., SCOOP, STACK, south-
ern Oklahoma) is the upper part of the middle member 
and the lower part of the upper member where the brittle 
zone overlies a high TOC interval above the maximum 
flooding surface.

There have been 5,505 Woodford Shale well com-
pletions (excluding wells commingled with other for-
mations) from August 2004 to June 2020. The earliest 

Woodford Shale wells drilled in the Arkoma Basin were 
vertical completions that produced gas. Once the depth 
and thickness of the Woodford Shale was determined by 
vertical drilling, horizontal wells later became the pre-
ferred drilling method. Of the 5,505 Woodford Shale well 
completions, 93% (5,096 wells) are horizontal/direc-
tional wells, 7% (409 wells) are vertical wells, and 32% 
(1,763 wells) are classified as oil wells based on a gas-to-
oil ratio <17,000:1. By 2007 the focus in the Woodford 
Shale play had shifted to more liquid-rich areas in the 
Anadarko Basin, Anadarko Shelf, Ardmore Basin, and 
Cherokee Platform of northern and central Oklahoma. 
Initial potential gas rates range from a trace to 29,847 
thousand cubic feet per day, initial potential oil/conden-
sate rates range from a trace to 2,505 barrels of oil per 
day, while total vertical depths range from 368 to 19,218 
ft (112 to 5,858 m). Reported oil gravities range from 21 
to 79 API degrees (49 API degrees is the approximate 
boundary between oil and condensate). Of 2,212 Wood-
ford oil wells, 1,171 wells had <49° oil gravity and 1,041 
wells had ≥49° oil gravity. For the most part, the upper 
limit of condensate production from Woodford Shale is 
1.4-1.5% VRo. Intervals with thermal maturities >1.67% 
VRo produce only natural gas.

Woodford Shale is an excellent unconventional oil 
and gas play because it is a thermally mature, organic 
carbon-rich source rock with intervals of brittle litholo-
gy. Recent assessments by the U. S. Geological Survey 
estimated the mean total undiscovered hydrocarbon re-
sources in Woodford Shale to be 29 trillion cubic feet 
of natural gas, 853 million barrels of crude oil, and 384 
million barrels of natural gas liquids. This research high-
lights the potential for significantly increasing oil and gas 
production from the Woodford Shale in Oklahoma.
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